

Nocebo-induced changes of corticospinal excitability: a TMS study

N Corsi¹ – M Emadi Andani^{1,2} – M Tinazzi¹- M Fiorio¹

¹ Department of Neurological and Movement Sciences, University of Verona (Italia) ² Department of Biomedical Engineering, University of Isfahan (Iran)

Background

The Nocebo effect can be induced by influencing subjects about the detrimental effects of a treatment on motor performance. The neurophysiological underpinnings of this effect are still completely unknown. By using transcranial magnetic stimulation (TMS) over the primary motor cortex, we investigated whether a nocebo modulation of force could change the excitability of the corticospinal system.

Task production measurements were obtained by asking healthy Force volunteers to perform abduction movements of the right index finger (FDI) muscle) to press a piston connected to a force transducer. During the main task, subjects had to press the piston in order to move the cursor toward

_ Pa	rticipants
	Experimental
	N=17 (7 F)
	mean age 23.3 ± 0.6

Bibliografia

Fiorio M, Emadi Andani M, Marotta A, Classen J, Tinazzi M. J Neurosci. 2014; 34: 3993-4005 Pollo A, Carlino E, Benedetti F. *Eur J Neurosci*. 2008;28:379-88

Nicole Corsi – PhD Student Dipartimento di Scienze Neurologiche

