KINEMATIC ANALYSIS OF REPETITIVE FINGER TAPPING AND THE EFFECTS OF SELEGILINE IN NEWLY DIAGNOSED PATIENTS WITH PARKINSON DISEASE

Giovanni Leodori, Matteo Bolognai2, Daniele Belvisi, Andrea Fabbrini, Giulia Paparella, Paola Stirpe1, Alfonso Fasano3, Giovanni Fabbrini2 & Alfredo Berardelli2

1Department of Neurology and Psychiatry, Sapienza University of Rome, Italy
2Neuromed Institute IRCCS, Pozzilli (IS), Italy
3Movement Disorders Center, TWH, UHN, Division of Neurology, University of Toronto, Ontario, Canada.

Background: Motor impairment in Parkinson's disease includes i) slowness, i.e. bradykinesia; ii) decreased amplitude, i.e. hypokinesia, and iii) progressive reduction in speed and amplitude during repetition of finger movements, i.e. sequence effect (Agostino et al., 2003, Espay et al., 2011). The kinematic features of the repetitive finger tapping in the early stage of PD are unknown. Also, the pathophysiological mechanisms of the sequence effect in PD are still unclear and they are not entirely explained by dopaminergic loss (Kang et al., 2010).

Objective: To evaluate the kinematic features of the repetitive finger tapping in the early stage of PD
To evaluate the response to Selegiline administration, a selective irreversible MAO-B inhibitor. There is considerable evidence showing that Selegiline has either dopaminergic and/or non-dopaminergic effects. We thus hypothesized that Selegiline might improve the sequence effect in patients with PD.

Methods: Participants: We recruited 14 newly diagnosed and previously untreated patients with PD TABLE 1. Seventeen right-handed, age- and gender-matched healthy subjects (HS) served as a control group. Participants were instructed to repeatedly tap their index finger and thumb as rapidly and as widely as possible for 15s. Three 15s trials were performed by each hand with 60s rest in-between. Patients were evaluated in two separate sessions, performed at least 4 weeks apart: OFF and ON Selegiline (10 mg taken daily).

Kinematic recordings and analysis: We used a motion analysis system (SMART DX 100, BTS, Milan, Italy) to record finger movements in the three-dimensional space. Movement amplitude is expressed in (mm) (Table 2). Movement velocity is expressed in (mm/sec) FIGURE 1. The sequence effect was measured as decrements in amplitude and velocity during the recording trials.

Statistics: The effects Selegiline on the UPDRS-III score were investigated by means of the Wilcoxon matched-pairs test. Amplitude and velocity during repetitive finger movements were analysed using repeated measure analysis of variance (ANOVA). Statistical significance was determined when P<0.05.

Results: There was significant improvement in the UPDRS III motor score in patients 4 weeks after taking Selegiline (OFF: 22.5±7.1 versus ON: 18.1±6.6; Z=2.78, P=0.005). PD patents exhibited movements of lower amplitude and velocity than HC, however the decrement of amplitude and velocity across the 15s trials was similar in the two groups. Selegiline administration improved the overall amplitude and velocity of movements in patients but did not modify the course of these variable during the recordings FIGURES 2 & 4.

Conclusions: The study provides novel information on repetitive finger movement kinematics in PD patients and indicates that reduced amplitude and velocity are the most relevant abnormalities in the early stage of the disease, whereas a significant performance decrement is likely a feature of the advanced stage of PD. The kinematic analysis of repetitive finger movement provides an accurate assessment of pharmacological therapies.

Major references: Agostino et al., 2003, Espay et al., 2011, Kang et al., 2010, Espay et al., 2011.