

M. Serpente, C. Fenoglio, SMG Cioffi, E. Oldoni, M. Arcaro, A. Arighi, G. Fumagalli,

L. Ghezzi, M. Mercurio, E. Scarpini., D. Galimberti

Neurology Unit, Dept. of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.

BACKGROUND

* Alzheimer's disease (AD) is a neurodegenerative disorder charcterized by progressive loss of memory and decline of cognitive functions. Worldwide research has led to a growing knowledge of the genetics and molecular pathogenesis of AD, indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline appearance.

*Currently, AD diagnosis is correctly performed by use of several biomarkers, such as structural and/or functional imaging (MRI, PET), cerebrospinal fluid (CSF) protein detection (β-amyloid, tau and p-tau) in accordance with Dubois criteria [1]. However, these biomarkers are invasive and expensive and in this framework, the identification of new peripheral biomarkers would be of critical importance in order to improve AD diagnosis.

*To date, there is increasing evidence supporting a link between AD and insulin dysfunction [2,3].

** INSr: AD 3.545 ± 0.5 versus ctrls 2.089 ± 0.35 P=0.0372

Dubois B. et al., Lancet Neurol. 2014 Jun;13(6):614-29
Dineley KT et al. Neurobiol Dis. 2014 Dec
De Felice FG, Ferreira ST. Diabetes. 2014 Jul;63(7):2262-72