HETEROGENEOUS PHENOTYPES AND TYPICAL MRI FINDINGS IN 3 CASES OF ADULT POLYGLUCOSAN BODY DISEASE (APBD)

* Department of Neurology - AO Lodi - Lodi
** Department of Neurology - Ospedale Maggiore - Crema
*** Neuromuscular Diseases Unit - IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Neuroscience Department - Milano

Introduction: Adult Polyglucosan Body Disease (APBD) is a very rare leukodystrophy (less than 100 cases described), with autosomal recessive inheritance. Various mutations in GBE1 gene are implied, causing deficiency of Glycogen Branching Enzyme, which leads to accumulation of polyglucosan bodies (PBs) in the central and peripheral nervous system, muscle, skin and other tissues. Progressive spastic paraparesis, neurogenic bladder and peripheral neuropathy presenting in 5th-6th decade are considered hallmarks of APBD; cognitive impairment may be associated. Key magnetic resonance imaging (MRI) findings are: diffuse leucoencephalopathy with infratentorial involvement and spine atrophy. APBD is allelic to Glycogen Storage Disease Type IV (GSD-IV), a severe infantile disease with liver impairment and cardiomyopathy. The clinical spectrum of GBE deficiency may include intermediate phenotypes, in which typical clinical findings, though not completely, were present. An extensive workup directed to explore the possible etiologies was performed. On the basis of MRI findings, which we considered strongly suggestive, APBD was suspected. In 2 cases genetic and biochemical analysis confirmed the diagnosis, while in 1 the diagnosis is still uncertain.

Case 1: male, aged 76, suffering from hypertension and mild NIDDM, since 6-7 years complained of progressive brainstem involvement with ataxia-paraparetic gait, neurogenic bladder was absent. A severe sensorimotor generalized neuropathy, both axonal and demyelinating, was associated. Initially motor neuron disease was suspected, due to bulbar symptoms with deneveration both in spinal and bulbar muscles at EMG, though notable sensory deficit was present. X-SBMA was excluded by proper genetic testing. Subsequently the lack of clinical progression induced to hypothesize cerebrovascular disease, as MRI showed a diffuse leucoencephalopathy (T2-weighted subcortical hyperintensities, both supra- and infratentorial), ascribed to chronic cerebrovascular disease. MMSE was normal. A complete laboratory workup directed to explore the etiology of peripheral neuropathy was unremarkable, including CSF analysis. Nerve biopsy was finally performed, which demonstrated accumulation of PBs. Neither GBE1 mutation could be demonstrated at Sanger sequencing, nor enzymatic deficiency on skin fibroblasts. The diagnosis is still uncertain.

Case 2: male, aged 55, complained since 1 year of distal paresthesias and muscular cramps in his lower limbs; later he developed moderate weakness and urinary urgency. On examination he had signs of diffuse involvement of pyramidal tracts and decrease of pallesthesic sensation in lower limbs; consequently he progressed to a paraparetic-ataxic gait. MMSE was normal. Routine blood exams, as well as CSF analysis, were normal. Peripheral involvement was confirmed by EMG abnormalities, mainly demyelinating. MRI showed diffuse hypertensive supra- and infratentorial white matter abnormalities, mainly periventricular, and spine atrophy. Muscle and nerve biopsy demonstrated accumulation of PBs. The diagnosis was confirmed by absence of GBE activity. Genetic analysis showed compound heterozygosis for a novel missense c.1064G>A (p.Arg355His) besides the known mutation c.1064A>G (p.Tyr353Cys).

Case 3: female, aged 56, sister of the previous case, since 4 years developed gait difficulties and later urinary incontinence. Medical history included mild hypercholesterolemia and depression with apathy and isolation. On examination diffuse pyramidal signs and paraparetic gait were demonstrated, whereas muscle strength and sensation were preserved. Nerve conduction study and muscle biopsy were unremarkable. MRI abnormalities were similar to her brother's ones. MMSE was normal. Enzymatic assay and genetic analysis demonstrated, too, the same familiar pathological pattern previously described in case 2.

References:
A. Sagnelli et al. Adult polyglucosan body disease in a patient originally diagnosed with Fabry's disease Neuromuscular Disorders 24 (2014) 272-276
J. Nitsos et al. Polyglucosan Body Myopathy Caused by Defective Ubiquitin Ligase RBCK1 Ann Neurol 2013;74:14-919
C. Paradis et al. Branching Enzyme Deficiency. Expanding the Clinical Spectrum JAMA Neuro 2014; 71(1)41-47
MA. Helmmann et al. Frequent misdiagnosis of Adult Polyglucosan Body Disease J Neurol 2015 Jul 22 (epub)
I. Colombo et al. Longitudinal follow-up and muscle MRI pattern of two siblings with polyglucosan body myopathy due to glycogenin-1 mutation J Neurol Neurosurg Psychiatry 2015 Jul 22 (epub)