Cognitive and behavioural impact of sleep quality in newly diagnosed multiple sclerosis

Marta Zaffira Conti MD[§], Sara La Gioia MD[§], Valeria Barcella MD[§], Marcella Vedovello MD[§], Barbara Frigeni MD[§], Paola Previtali+, Simonetta Spada+, Mariarosa Rottoli MD§

[§] Department of Neurosciences – ASST Papa Giovanni XXIII– Bergamo ≠ Clinical Psychology – ASST Papa Giovanni XXIII– Bergamo

Objective: patients with multiple sclerosis (MS) often have unrecognized sleep disorders, that may contribute to fatigue, one of the major symptoms in all phases of the disease, and impact on the quality of life. However, the exact relationship between sleep quality, fatigue and cognitive function is today poorly understood. The purpose of this study was to compare the neuropsychological profile of newly diagnosed MS subjects with and without sleep complains.

XLVII CONGRESSO NAZIONALE 22-25 OTTOBRE 2016 – VENEZIA

Table 1. Demographic, clinical and psychobehavioural characteristics

	MS-SLEEP- (N=42)			M			
	%	mean	sd	%	mean	sd	p value
Gender (Male)	23.8			39.1			
Age (years)		34.7	8.9		38.5	13.5	0.175
EDSS		1.6	0.8		2.0	0.5	0.060
TWT TO		10.0	1.6		10.5	1.7	0.236
9HPT right		<mark>18.5</mark>	<mark>2.6</mark>		<mark>20.6</mark>	<mark>4.1</mark>	<mark>0.016</mark>
9HPT left		20.1	3.6		22.7	7.2	0.061
PSQI		<mark>3.0</mark>	<mark>1.3</mark>		<mark>9.3</mark>	<mark>3.3</mark>	<mark>0.000</mark>
BDI		<mark>8.8</mark>	<mark>9.7</mark>		<mark>15.5</mark>	<mark>10.6</mark>	<mark>0.013</mark>
STAI-y Trait		<mark>49.5</mark>	<mark>11.2</mark>		<mark>56.9</mark>	<mark>11.5</mark>	<mark>0.014</mark>
STAI-y State		<mark>51.7</mark>	<mark>10.8</mark>		<mark>59.0</mark>	10.7	<mark>0.011</mark>
ESS		6.0	3.4		6.2	4.5	0.786
MSQOL-54p		<mark>73.6</mark>	<mark>13.6</mark>		<mark>56.3</mark>	<mark>18.2</mark>	<mark>0.000</mark>
MSQOL-54m		<mark>72.4</mark>	<mark>17.3</mark>		<mark>56.6</mark>	<mark>22.5</mark>	0.002
FSS		<mark>2.9</mark>	<mark>1.4</mark>		<mark>4.2</mark>	<mark>1.5</mark>	<mark>0.001</mark>

Material and Methods: we enrolled 65 subjects satisfying 2010 revised McDonald criteria from June 2012 to October 2015 at the MS Centre of Bergamo. At a mean time of 4.6 months from diagnosis, each patient underwent a multidimensional assessment comprehensive of neuropsychological tests (BRB, MMSE, Clock Drawing, Verbal Fluency, Digit Span, Corsi, EBN, Rivermead Behavioural Memory, TMA, TMB, Stroop, Attentive Matrices, Raven's Progressive Matrices, Tower of London, Rey Complex Figure Test, WCST), evaluation of depression, anxiety, sleep, fatigue and quality of life (BDI, STAI-Y, PSQI, ESS, FSS, MSQOL-54), measures of motor function and disability (9HPT, TWT, EDSS). Subjects were classified as good (MS-Sleep-) or bad (MS-Sleep+) sleepers respectively by a PSQI score > or =< 5.

Results: thirthy-five percent of our patients (N=23) were MS-Sleep+. No significant difference in sex prevalence (Males: 23.8%) MS-Sleep-, 39.1% MS-Sleep+), mean age (MS-Sleep-: 34.7±8.9 vs MS-Sleep+: 38.5±13.5 years old) and disability at diagnosis (EDSS MS-Sleep-: 1.6±0.8; MS-Sleep+: 2.0±0.5) was detected. MS-Sleep+ subjects had higher scores on anxious-depressive symptoms (BDI: 15.5±10.6 vs 8.8±9.37; STAY: 59.0±10.7 vs 51.7±10.8,p=0.05), accentuated fatigue (FSS: 4.2±1.5 vs 2.9±1.4,p<0.005), reduced quality of life (MSQOL-54physical: 56.3±18.2 vs 73.6±13.6, MSQOL-54mental: 56.6±22.5 vs 72.4±17.3,p< 0.005) and motor skills (9-HPTdx: 20.6±4.1 vs 18.5±2.6,p< 0.05) than MS-Sleep- subjects (Table 1). The cognitive scores were all supra-threshold and comparable, except for Tower of London (mean score: 28.7±4.6 in MS-Sleep+ vs 30.6±2.7 in MS-Sleep-,p<0.05) (**Table 2**). No differences were detected on daytime sleepness.

Table 2. Neuropsychological profile

	MS-SLEEP- (N=42)		MS-SLEEP+ (N=23)		
	mean	sd	mean	Sd	p value
MMSE	29.7	1.0	29.2	1.6	0.256
BRB					
SRT-LTS	46.5	12.2	46.6	12.2	0.974
SRT-CLTR	33.0	16.2	34.5	15.5	0.730
SPART	18.4	5.5	20.2	5.9	2.210
SDMT	52.2	10.5	52.2	14.4	0.977
PASAT 3	38.5	13.9	41.2	13.7	0.539
PASAT 2	28.8	11.2	33.1	13.4	0.267
SRT-D	8.5	2.4	8.5	2.2	0.983
SPART-D	6.7	2.3	7.4	2.4	0.205
WLG	23.7	6.7	23.9	4.5	0.921
WCST	57.2	34.9	59.2	32.1	0.831
Digit Span forward	5.3	1.0	5.6	1.0	0.323
Digit Span backward	4.7	1.2	4.7	1.6	1.000
Corsi	5.2	1.1	4.8	0.9	0.139
Rivermead1	10.9	2.6	10.3	1.9	0.302
Rivermead2	20.9	2.3	21.2	2.7	0.608
Tower of London	<mark>30.6</mark>	<mark>2.7</mark>	<mark>28.7</mark>	<mark>4.6</mark>	<mark>0.047</mark>
Phonemic Fluency	35.9	11.8	36.3	9.6	0.883
Rey Figure copy	30.9	2.4	30.6	2.7	0.644
Rey Figure recall	14.4	6.3	15.4	6.4	0.578
Raven's Matrices	29.8	3.9	30.6	3.4	0.395
ТМТА	37.6	12.5	36.3	13.6	0.697
тмтв	106.6	73.5	85.3	40.0	0.222

Discussion and conclusions: in line with others studies, our investigation confirms a relationship between sleep complains, emotional status, fatigue and quality of life. Poor sleep does not influence overall cognitive functioning, though slightly affecting only the executive domains, at least in earlier stages of MS. In contrast with current literature, we did not find any contribution of daytime sleepiness to sleep disorders and fatigue. Further longitudinal observations and a larger sample are needed to validate these findings.

References:

T.J. Braley, E.A. Boundreau. Sleep disorders in Multiple Sclerosis. Curr Neurol Neurosci Rep

