

The combined analysis of CSF t-PrP, t-tau, p-tau and $A\beta_{1-42}$ best distinguishes **Creutzfeldt-Jakob disease from Alzheimer disease**

Samir Abu Rumeileh¹, Francesca Lattanzio¹, Romana Rizzi³, Sabina Capellari^{1,2}, Piero Parchi^{1,2}.

1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. 2 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy. 3 Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.

Background

According to recent studies, the determination of CSF t-tau/phosphorylated tau (p-tau) ratio and total prion protein (t-PrP) levels significantly improves the accuracy of Alzheimer disease (AD) diagnosis in atypical cases with clinical or laboratory features mimicking Creutzfeldt-Jakob disease (CJD) [1,2]. However, this has neither been validated nor tested in series including atypical CJD variants. Furthermore, the added diagnostic value of A β_{1-42} remains unclear. Our aim was to investigate the efficiency of CSF t-PrP levels either alone or in combination with other CSF biomarkers to discriminate CJD from AD.

Methods

We performed a retrospective study on 230 CSF samples that were analyzed for CSF 14-3-3, t-tau, p-tau, and A_{β1-42}. We measured t-PrP levels in all samples. Based on clinical findings at follow-up, genetic, neuropathological and CSF biomarker data, we identified five groups: 45 typical AD patients, 44 atypical/rapidly progressive AD (a/rp AD) patients, 54 typical CJD patients, 54 atypical CJD patients, and 33 controls.

Results

	Table 101D			
	Typical CJD	Atypical CJD*		
	(N=54)	(N=54)		
Definite sporadic CJD	51	32		
MM1	23	6		
MM1+2C	8	5		
VV2	15	0		
MV 2K	5	13		
MM 2C	0	5		
MM 2T	0	2		
VV1	0	1		
Definite genetic CJD	1	7		
E200K-129MM(V)	1	6		
R208K-129VV	0	1		
Probable CJD	2	15		
MM	0	3		
Ν/\/	2	12	§ p ger	

Clinical and biological features of ypical/rapidly progressive AD (N=44)

Clinical presentation

CJD patients showed significantly lower CSF t-PrP levels than controls (p<0.001) and AD patients (p<0.001). Atypical CJD was associated with lower t-PrP levels in comparison to typical CJD (p=0.005; see table below).

800-

Cognitive decline	44/44					
Extrapyramidal signs	9/44					
Pyramidal signs	3/44					
Myoclonus	5/44					
Cerebellar signs	2/44					
Biomarkers Data						
t-tau>1200 pg/ml	22/44					
Positive 14-3-3	7/44					
Genetic features						
	ε4 - 30%					
POE gene allele frequency§	ε4/4 13%					
FAD Mutations**	2/13					
(APP, PSEN1, PSEN2)	(both in PSEN1)					

nts (n=31) with available DNA / informed consent for analyses

**patients (n=13) with early onset AD (<65 years) and/or a positive family history

* The classification of atypical CJD required at least one among: (1) clinical course >2 years, (2) progressive cognitive decline without focal neurological signs (up to the time of CSF analyses), (3) CSF ttau < 1200 pg/ml, (5) borderline or negative CSF 14-3-3 assay

T-tau, 14-3-3 or t-PrP alone yielded, respectively, 80.6, 63.0 and 73% sensitivity and 75.3, 92.1 and 75% specificity in distinguishing AD from CJD.

On Receiver Operating Characteristic (ROC) curve analyses of biomarker combinations, the (t-tau × $A\beta_{42}$ /(p-tau × t-PrP) ratio achieved the best accuracy, with 98.1% sensitivity and 97.7% specificity overall (see figure below), and 96.2% sensitivity and 95.5% specificity for the "atypical" disease groups.

	all AD	typical AD	a/rp AD	all CJD	typical CJD	atypical CJD
	(N=89)	(N=45)	(N=44)	(N=108)	(N=54)	(N=54)
t-PrP (ng/ml)						
Median	335	334	345	173	209	141
(IQR)	(234-455)	(281-455)	(224-469)	(103-261)	(131-288)	(83-208)
t-tau (pg/ml)						
Median	822	697	1223	2489	7284	1390
(IQR)	(582-1223)	(509-846)	(703-1668)	(1389-7344)	(3022-10004)	(914-2086)
p-tau (pg/ml)						
Median	104	90	122	49	55	46
(IQR)	(77-140)	(74-115)	(81-151)	(37-68)	(41-72)	(34-65)
Αβ ₁₋₄₂ (pg/ml)						
Median	358	371	326	527	553	498
(IQR)	(266-465)	(279-469)	(250-442)	(366-747)	(353-773)	(370-738)

Discussion

•We confirm the previously described decrease of t-PrP CSF levels in CJD, which may reflect the extent of abnormal PrP deposition in CJD brains like so CSF A β_{1-42} levels inversely correlates with amyloid burden in AD.

•Atypical CJD variants such as MV2 and MM2 are usually associated with a relatively high amount of PrP^{sc} accumulation involving major areas of the brain. This could explain the higher reduction of t-PrP levels in atypical CJD cases.

In our CJD population, Aβ₁₋₄₂ CSF levels were highly heterogeneous, with several cases of both typical and atypical CJD groups showing a lower than cut-off value. Whether this result simply reflects the burden of associated AD pathology or also depends on a pathogenic interaction between PrP and A\beta1-42 remains to be seen.

•While individually none of the major CSF proteins that reflect the specific molecular pathology of AD (p-tau and Aβ42) and CJD (PrP) or the associated neuronal damage (t-tau, 14-3-3) distinguish the two disorders with sufficient accuracy, various combinations of these markers significantly increase the diagnostic power. Among, them the (t-tau × $A\beta_{1-42}$)/(p-tau × t-PrP) ratio best distinguishes CJD from AD patients and is especially recommended in the diagnostic work-up of patients presenting with atypical clinical features that are compatible with both diseases.

1 Skillbäck T, Rosén C, Asztely F, Mattsson N, Blennow K, Zetterberg H. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol. 2014 Apr;71(4):476-83. 2 Dorey A, Tholance Y, Vighetto A, Perret-Liaudet A, Lachman I, Krolak-Salmon P, Wagner U, Struyfs H, De Deyn PP, El-Moualij B, Zorzi W, Meyronet D, Streichenberger N, Engelborghs S, Kovacs GG, Quadrio I. Association of cerebrospinal fluid prion protein levels and the distinction between Alzheimer disease and Creutzfeldt-Jakob disease. JAMA Neurol. 2015 Mar;72(3):267-75.