High prolactin serum level predicts low inflammatory damage

during INF-beta treatment in patients with MS

De Giglio L^{1,2}, Marinelli F², Barletta VT², Prosperini L¹, Gurreri F², Tomassini V³, Pantano P¹ and Pozzilli C^{1,2}.

¹Department of Neurology and Psychiatry, Sapienza University of Rome (Rome, IT)

²MS Centre Sant'Andrea Hospital, Sapienza University of Rome (Rome, IT)

³Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine (Cardiff, UK)

Background: The relationship between prolactin (PRL) serum levels and white matter volume in patients with multiple sclerosis (MS) supports a role of PRL in promoting myelin repair. [1] In experimental models, PRL shows beneficial effects on clinical signs of disease when administered in combination with Interferon beta (IFN beta) [2].

Objective: to test whether PRL serum levels predict the development of inflammatory damage during treatment with IFN beta

An higher number of CUA number in the second year were predicted by a We recruited relapsing-remitting MS (RRMS) from the trial Methods

registered in ClinicalTrials.gov with number NCT00151801 [3]. Blood samples for the assessment of PRL plasma level were obtained before randomisation. Patients were randomly assigned in a 1:1:1 ratio to receive subcutaneous IFNbeta-1a only or in combination with two different dosages of oestroprogestins. They underwent 1.5 Tesla MRI and clinical evaluation at baseline and after 1 and 2 years. We quantified hyperintense lesion volumes on T2weighted images (T2LL) and hypointense lesion volumes on T1-weighted preand post-contrast images (T1LL and Gd+LL) with a semi-automated method; we calculated the number of combined unique active (CUA) lesions, defined as new T2 lesion or gadolinium enhancing (Gd+) lesions without double counting. Predictor of CUA number were assessed with a Poisson regression model: age, disease duration, EDSS baseline, presence of Gd+ lesions at baseline, number of T2 lesion at baseline and PRL level and treatment group were included as covariate

Results We included 99 women with a mean (SD) age of 30 (7) years, mean MS duration of 3.5 (3.8) years, median EDSS of 1.5 (range 0-4.5). Mean PRL level was 13.8 (7.7) ng/ml; no correlation was found between PRL levels and PRL level showed a negative demographic or clinical baseline data. correlation with baseline T2LL and T1LL (rho=-0.245, p=0.014 and rho=-0.236 p=0.018 respectively) (figure 1) but not with Gd+LL. Mean number of CUA was 1.9 (2.6) at year 1 and 1.4 (3.17) at year 2; we found a negative correlation between CUA number at 2 year and baseline PRL level (rho=-0.221, p=0.02) (**figure 2**).

lower EDSS score, lower PRL levels, absence of Gd+ lesions, allocation to treatment with IFN-beta-1a only (table 1).

Figure 2: correlation between PRL level and number of CUA in the second year.

Table 1: predictors of CUA number in the second year of treatment

Figure 1: correlation between PRL level and lesion load in T2

Bibliography

1. Relationship between Prolactin Plasma Levels and White Matter Volume in Women with Multiple Sclerosis.

De Giglio L, Marinelli F, Prosperini L, et al. Mediators Inflamm. 2015;2015:732539.

734		
	2.146-6.498	<0.001
.559	0.401-0.779	0.001
.384	0.269-0.54	<0.001
.390	0.257-0.592	<0.001
.354	0.216-0.582	<0.001
.008	1.006-1.011	<0.001
	559 384 390 354 008	5590.401-0.7793840.269-0.543900.257-0.5923540.216-0.5820081.006-1.011

Conclusions

The association between higher baseline levels of PRL and lower inflammatory damage at follow-up suggests that PRL is an independent predictor of tissue damage development during treatment with IFN beta.

Disclosures:

LP has received consulting and/or lecture fees and travel grant from Bayer Schering, Biogen Idec, Genzyme, Biogen Idec, Novartis and Teva; PP has received founding for travel from Novartis, Genzyme and Bracco and speaker honoraria from

2. Prolactin in combination with interferon-β reduces disease severity in an animal model of multiple sclerosis. Zhornitsky S,

Johnson TA, Metz LM, Weiss S, Yong VW. J Neuroinflammation. 2015 Mar 19;12:55.

3. Oral contraceptives combined with interferon β in multiple sclerosis. Pozzilli C, De Giglio L, Barletta VT, et al. Neurol

Neuroimmunol Neuroinflamm. 2015 Jun 18;2(4):e120.

Byogen; CP has received consulting and lecture fees from Bayer Schering, Biogen, Merck-Serono, Novartis, and Sanofi-

Aventis; has received research funding from Bayer Schering, Merck Serono, Novartis, and Sanofi-Aventis. Other authors

declare that they have not conflicts of interest