

simple measure of Cognitive Reserve predicts cognitive performany in simple formany is a second seco

M. Della Corte^{1,2}, G. Santangelo³, A. Bisecco^{1,2}, R. Sacco¹, M. De Stefano¹, A. d'Ambrosio¹, L. Lavorgna¹, M. Cirillo⁴, S. Bonavita^{1,2}, G. Tedeschi^{1,2}, A. Gallo^{1,2}

¹Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, Italy ² MRI Research Centre SUN-FISM, IDC-Hermitage-Capodimonte, Naples, Italy ³ Department of Psychology, Second University of Naples, Caserta, Italy ⁴Neuroradiology Service, Department of Radiology, Second University of Naples, Naples, Italy

BACKGROUND

Cognitive impairment (CI) is estimated to affect 40% to 70% of patients with multiple sclerosis (MS). Individual cognitive reserve (CR) can mitigate the detrimental effect of the disease on cognitive function.

OBJECTIVES

To assess, in a large group of MS patients, the relationship between two CR measures and cognitive performances after controlling for multiple clinical, demographic and magnetic resonance imaging (MRI) parameters.

METHODS

 \triangleright Study population: 115 patients diagnosed with clinically isolated syndrome (CIS, N = 4), relapsing-remitting MS (RRMS; N = 98) and secondary-

progressive MS (SPMS; N = 13) (demographic characteristics are summarized in Tab. 1).

- > Data acquired (on the same day):
- Neurological evaluation including the Expanded Disability Status Scale (EDSS)
- Fatigue Severity Scale (FSS) and Chicago Multiscale Depression Inventory (CMDI)
- Two measures of CR:
- <u>number of years of formal/academic education</u> (EDU)
- vocabulary knowledge (VOC), as assessed by the vocabulary task of the Wechsler Abbreviated Scale of Intelligence
- Neuropsychological (NP) evaluation \rightarrow Rao's Brief Repeatable Battery (BRB) + Stroop Test \rightarrow 10 NP tests (failed test = \leq 2SD vs normative value) • 3T-MRI study, including T2, T2-FLAIR and a high-resolution 3D-T1 sequences
- Data analysis:

A linear multivariate regression analysis – including CR measures as well as clinic-demographic parameters (age, gender, disease duration, EDSS, FSS, CMDI) and MRI metrics (T2-lesion volume [T2LV], normalized brain volume [NBV], normalized grey matter volume [NGMV], normalized white matter volume [NWMV]), as covariates - was used to investigate the best independent predictors of each NP test score (Tab. 2).

Tab. 1	Mean ± SD	Tab. 2 Outcome	Predictor		
Age, y	38.28 ± 10.9			β	p
Sex (M/F)	38/77	SRT-LTS $n < 0.0001 (R^2 = 0.257)$	VOC	0.316	0.001
Edu, y	12.6 ± 3.7	$p < 0.0001 (R - 0.237)$ SPT_CITP	VOC	0 363	> 0 0001
Dis. Duration, m	136.98 ± 116.5	$p < 0.0001 (R^2 = 0.288)$	VUC	0.505	<u>~0.0001</u>
EDSS	2.82 ± 2	SPART	VOC	0.330	0.001
VOCAB-WAIS	41.54 ± 16.2	p < 0.0001 (R ² = 0.292)			
SRT-LTS	38.47 ± 15.2	SDMT	VOC	0.471	> 0.0001
SRT-CLTR	26.66 ± 15.3	p < 0.0001 (R ² = 0.500)	T2-VOI	-0.246	0.003
SPART	17.45 ± 5.5	PASAT3" $n < 0.0001 (R^2 = 0.292)$	VOC	0.428	> 0.0001
SDMT	34.05 ± 13.1	PASAT2"	VOC	0.332	0.001
PASAT 3"	34.97 ± 14.1	$p = 0.003 (R^2 = 0.213)$			01001
PASAT 2"	27.38 ± 10.4	SRT-D	VOC	0.293	0.002
SRT-D	7.32 ± 2.6	$p = 0.001 (R^2 = 0.210)$			
SPART-D	5.77 ± 2.3	SPART-D	VOC	0.412	> 0.0001
WLG	19.18 ± 4.9	$p > 0.0001 (R^2 = 0.346)$	T2-VOI	-0.263	0.006
STROOP	86.36 ± 56	WLG $p = 0.001 (R^2 = 0.225)$	VOC	0.325	0.001
CMDI	73.46 ± 21.6	STROOP	VOC	-0.305	0.001
FSS	33.29 ± 15.8	$p > 0.0001 (R^2 = 0.253)$	EDSS	0.325	0.001

DISCUSSION AND CONCLUSIONS

•A simple measure of CR, such as the VOC, was the stronger and more consistent predictor of cognitive performances as measured by Rao's BRB and Stroop Test in a large single-center group of MS patients.

•EDSS score also emerged as an independent predictor of cognitive performance at executive functions subtest (Stroop Test).

•T2-VOI also emerged as an independent predictor of cognitive performance at sustained attention (SDMT) and visuo-spatial memory delayed recall (SPART-D) subtests.

•VOC might be used by clinicians as a measure of CR to identify patients at greater risk of future CDs and target them for early cognitive rehabilitation intervention.

<u>RESULTS</u>

A higher VOC was the best independent predictor (0.01<p<0.001) of better performance at all BRB subtests and Stroop Test. T2-VOI and EDSS also emerged as independent predictors of cognitive performances, but only in a few BRB subtests.

FUTURE RESEARCH

 Future multi-center studies with a longitudinal design will have to further assess the utility of this simple CR measure as a clinical-meaningful predictor of cognitive performances in MS patients.

•It would also be very interesting to extent the investigation of the CR in the pediatric MS population.

<u>REFERENCES</u>

• Stern Y. Cognitive reserve. Neuropsychologia. 2009 Aug;47(10):2015-28.

