

Tau pathology, CSF lactate levels and cerebral glucose hypometabolism are associated in Alzheimer's Disease: evidence from BA10 analysis.

<u>Claudio Liguori</u>, Pierantozzi M, Chiaravalloti A, Sancesario GM, Schillaci O, Mercuri NB, Sancesario G

UOC Neurologia e Neurofisiopatologia, Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma "Tor Vergata"

OBJECTIVE

Neurofibrillary tau pathology is one of the main hallmarks of Alzheimer's Disease (AD) neurodegeneration. Recent evidence suggests a possible causal role of tau pathology on cerebral glucose metabolism impairment and CSF lactate levels in AD (Kulic et al, NBA, 2011; Liguori C et al, JNNP, 2015). On these basis, the aim of the present study is to investigate in AD patients possible interplays linking alteration of neuronal energy metabolism, measured via both CSF lactate concentrations and [18F]FDG PET assessments, to CSF total tau (t-tau) proteins levels.

	AD patients (n=32)	Analysis Cluster level						Voxel level		
	(mean±SD)		cluster	cluster	Cluster	Cortical Region		Talairach	Cortical region	
Age (years)	69.9±7.46	Negative	p(FWE-corr)	p(FDR-corr)	extent		Z score of maximum	coordinates		BA
		correlation	0.000	0.000	22045	L Frontal	3.49	-34,40,14	Middle Frontal Gyrus	10
Sex	16F 16M					L Frontal	3.41	-4,32,-12	Medial frontal gyrus	11
						L Limbic	3.37	-28,-28,-20	Parahippocampal gyrus	35
Disease Duration (years)	2.73±1.77	Positive correlation	-	-	-	-	-	-	_	-
MMSE	18.81±5.72	Analysis	Cluster level					Voxel level		
Lactate (mmol/L)	1.87±0.24	Negative	cluster p(FWE-corr)	cluster p(FDR-corr)	Cluster extent	Cortical Region	Z score of maximum	Talairach coordinates	Cortical region	BA
T-tau (pg/mL)	738.62±358.95	correlation	0.001	0.000	4960	R Temporal	4.66	50,10,-24	Superior temporal gyrus	38
						R Temporal	4.61	44,12,-32	Superior temporal gyrus	38
P-tau (pg/mL)	96 37+47 98					L Frontal	3.42	40,14,-14	Inferior frontal gyrus	47
	<i>y</i> 0. <i>3 i i i i i j</i> 0		0.001	0.000	5119	R Limbic	3.54	4, 42, 2	Anterior cingulate	32
						R limbic	3.49	16, 44, 4	Anterior cingulate	10
$A\beta_{42}(pa/mL)$	308.19 ± 121.44					L frontal	3.49	-34, 40, 14	Middle Frontal Gyrus	10

CONCLUSIONS

We verified the occurrence of high CSF t-tau and lactate levels in AD patients compared to controls. Significantly, CSF t-tau and lactate concentrations are not only linked in a mutual interplay, but also correlated to cerebral glucose hypometabolism. Significantly, CSF t-tau and lactate levels correlated with hypometabolism in BA10, which represents a key area in AD neurodegeneration.

