TARDBP Ala382Thr mutation and C9orf72 expansion in Multiple Sclerosis:a possible role in brain atrophy

L.Lorefice,¹G. Fenu,¹ Murru MR,¹ Cabras F,² Sechi V,² Barracciu MA,² J.Frau,¹ GC. Coghe,¹ Cuccu S,¹ Tranquilli S,¹ E.Cocco,¹MG.Marrosu ¹

¹Multiple Sclerosis Centre, ASL8-Binaghi Hospital, University of Cagliari, Italy

²Radiology Unit, Binaghi Hospital, ASL8- Cagliari, Italy

Background. Multiple sclerosis (MS) is a central nervous system disease that is specifically characterized by inflammatory demyelination and neurodegeneration [1]. Recently, the TARDBPAla382Thr mutation and the C9orf72 expansion were hypothesized to play a role in MS neurodegeneration [2].

The aim of this study was to explore if these mutations play a role in enhancing brain atrophy in MS.

Materials and Methods.

The study included a group of MS patients that carried the TARDBP Ala382Thr

Demographical data of MS mutated patients carrying mutation versus patients without mutation

18 MS patients carrying mutations* 18 MS patients without mutations*

mutation and the C9orf72 expansion and age-, sex-, disease course-, and EDSSmatched MS patients without the mutation. Recruited patients underwent brain MRI. Volumes of whole brain, white matter, and grey matter were estimated via SIENAX.

Female Gender §	14	14
Age (mean \pm sd) [§]	41.5 ± 11.8	41.6 ± 11.6
Relapsing course [§]	15	15
EDSS score [§]	2.8 ± 1.8	2.8 ± 1.8
Disease Duration	15.2 ± 9.2	13.8 ± 6.5

RESULTS

The MS sample comprised 18 patients without and 18 with the mutations. Fifteen patients reported the TARDBP Ala382Thr mutation and 3 the C9orf72 pathogenic expansion. The mean age at time of the brain MRI was 41.5 years (SD \pm 11.8) and the mean EDSS score was 2.8 (SD \pm 1.8). No differences in whole brain and grey matter volumes were reported between the two groups, but lower white matter volumes were found in the mutated group (p 0.03). A difference in white matter volumes was reported in an analysis limited to 15 patients with the TARDBP Ala382Thr mutation, compared to non-mutated patients (688.68 ml \pm 36.55 vs 713.22 ml \pm 27.34; p 0.04); no difference was reported between the C9orf72-mutated patients and controls.

Volumes in ml	All mutated MS patients *	MS patients without mutations*	P value	
GM§	784,46 ± 56.14	804,12 ± 55.74	0.30	
WM ^{§§}	$687,81 \pm 35$	710,92 ± 26.62	0.03*	

WB ^{§§§}	1472,28 ± 77.97	$1515,05 \pm 66.84$	0.08
	MS patients carrying TDP mutation*	MS patients without mutations*	P value
GM§	$780,72 \pm 55.48$	807,38 ± 55.18	0.24
WM ^{§§}	688.68 ± 36.55	713,22 ± 27.34	0.04*
WB ^{§§§}	1469.41 ± 79.49	$1518,02 \pm 65.04$	0.07
	MS patients carrying C9orf72 mutation*	MS patients without mutations*	P value
GM§	803.16 ± 67.88	800.77 ± 76.79	0.9
WM ^{§§}	683.47 ± 32.03	699.44 ± 23.57	0.5
WB ^{§§§}	1486.64 ± 84.08	$1500,21 \pm 89.25$	0.8

GM: gray matter; WM: white matter; WB: whole brain

Conclusions.

Despite the fact that these mutations do not play a major role in MS pathogenesis,

they may enhance brain atrophy, especially for white matter.

References.

1. Charil A., M. Filippi, Inflammatory demyelination and neurodegeneration in early multiple sclerosis, J. Neurol. Sci. 259 (1–2) (Aug 15 2007) 7–15

