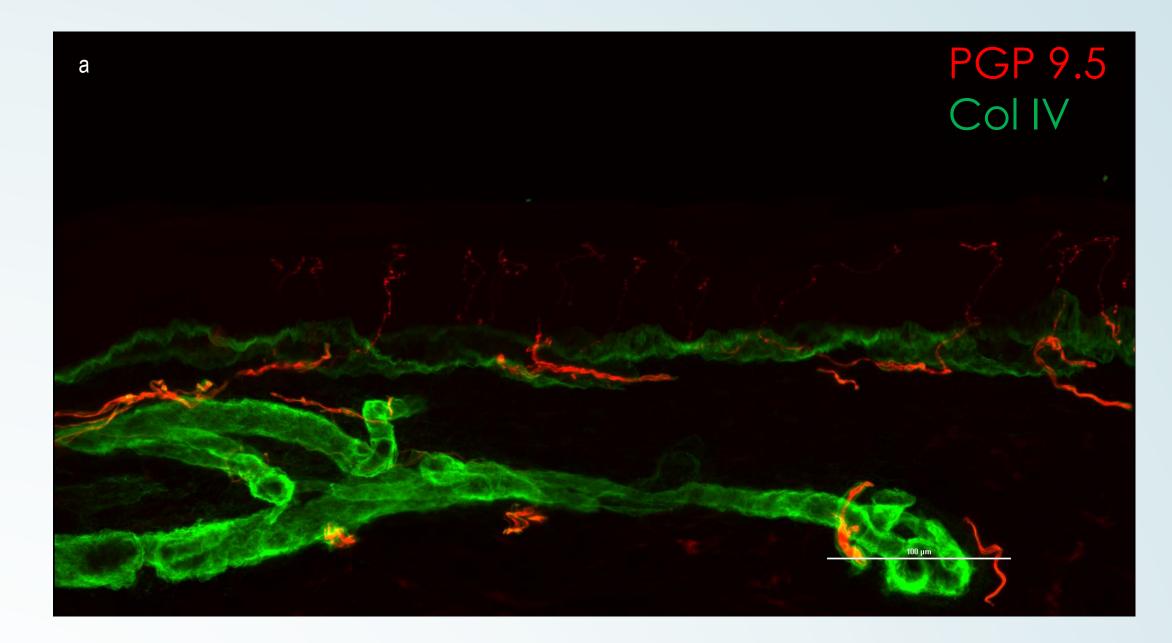
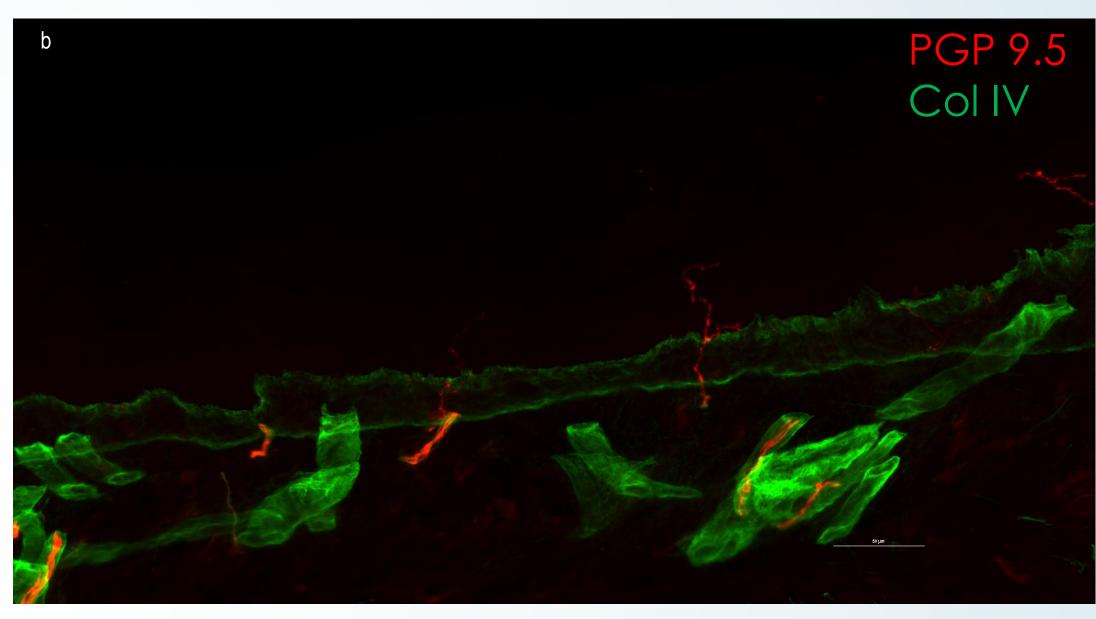


Small fiber neuropathy in Amyotrophic Lateral Sclerosis: a skin biopsy and laser evoked potential combined study


ALMA MATER STUDIORUM Università di Bologna



Simona Maccora^{1,2}, Vincenzo Donadio¹, Eleonora Pagliarani¹, Alex Incensi¹, Vitantonio Di Stasi¹, Rocco Liguori^{1,3}. ¹IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna. ²Department of Experimental Biomedicine and Clinical Neurosciences (BioNec), University of Palermo, Palermo. ³DIBINEM, Department of Biomedical and Neuromotor Sciences - Bellaria Hospital/ Alma Mater Studiorum, University of Bologna, Bologna.

Objectives

Increasing evidence suggests that Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder with prominent involvement of motor neurons. Skin biopsy studies have already showed a subclinical loss of intraepidermal nerve fibers in distal legs, occurring in ALS patients irrespective of the disease duration [1,2,3]. This study aimed at

Skin biopsy representative findings. Confocal double-stained images (40 x magnification) showing intraepidermal nerve fibre density at the distal leg in (a) a control subject and (b) a patient with amyotrophic lateral sclerosis (ALS). Nerve fibres are stained in red (protein-gene product 9.5) and basement membrane and the blood vessels are stained in green (collagen IV). Bar = 100 μ m.

Discussion

evaluating the performance of a battery of neurophysiological and morphological tests assessing the small fiber loss occurring in ALS.

Patient No.	Age	Sex	Height	Type of onset	Sural nerve conduction	Sensory complaints at onset	Duration of symptoms (months)	Foot LEPs	Hand LEPs	C-fiber LEPs	Trigemi- nal LEPs
1	72	М	174	Bulbar	Normal	None	60	Altered (< AMP)	Normal	Normal	Altered (> LAT)
2	65	М	178	Bulbar	Normal	None	18	Normal	Normal	Normal	Normal
3	72	F	162	Bulbar	Normal	None	12	Absent	Normal	Absent	Not tolerated
4	65	F	165	Pyramidal	Amplitude right>left	None	15	Normal	Normal	Absent	Normal
5	63	М	174	Flail limb	Normal	None	40	Normal	Normal	Normal	Altered (> LAT)
6	52	F	150	Flail limb	Normal	None	30	Normal	Normal	Normal	Altered (> LAT)
7	60	М	174	Spinal	Normal	Hypoestesia bilateral foot	60	Normal	Normal	Normal	Normal
8	60	М	177	Flail limb	Normal	None	60	Normal	Normal	Normal	Normal
9	55	F	168	Flail limb	Normal	None	24	Altered (< AMP)	Normal	Normal	Normal
10	73	F	155	Spinal	Normal	None	13	Normal	Normal	Altered (> LAT)	Normal
11	67	М	175	Spinal	Normal	None	11	Normal	Normal	Normal	Normal

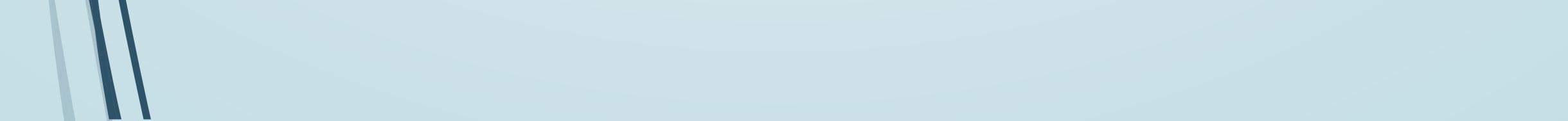
Materials and methods

Consecutive patients referred to our clinics for ALS were screened. Patients diagnosed as having definite or clinically probable or laboratorysupported ALS (according to the revised El Escorial criteria) took part to the study. We investigated large myelinated fibers with sural nerve conduction studies (NCS) and small fibers with laser-evoked potentials (LEPs) and skin biopsy in eleven consecutive patients (6 M, age 64,9±7,3 years, duration of symptoms 29,1±20,7 months), 3 with bulbaronset, 3 with spinal-onset, 4 with flail limb onset and 1 with pyramidal syndrome. Only one patient complained of foot paresthesias. LEPs using a Nd:YAP laser stimulator of face, hand dorsum and distal leg were recorded in all patients. Skin biopsy was performed at the proximal and distal leg and intraepidermal nerve fiber (IENF) density was quantified according to the available published guidelines [4]. Findings were referred to age- and sex-adjusted normative values.

Results

Sural NCS was normal in all patients. Absence or reduced amplitude of A δ -LEPs by foot stimulation was revealed in 27% of our sample. C-LEPs were absent in 27% patients. Alteration of both A δ and C-LEPS was detected in only one patient. IEFN density was altered in 100% of patients (proximal leg: 7,9±3,2; distal leg: 3,9± 1,8).

As previously suggested by several lines of evidence, our study has confirmed a small fiber involvement in our small cohort. Moreover, no difference in ALS subtypes was disclosed according to previous findings [3]. Neurodegenerative processes probably share similar molecular pathways, affecting both motor and sensory fibers. To our knowledge this is the first study using Nd:YAP LEPs and skin biopsy assessment in ALS patients. Between neurophysiological instruments, LEPs have been revealed as the most sensitive tool to detect small fiber loss in several neurological disorders. However, although a positive correlation between LEPs and skin biopsy has already been detected in single case reports and diabetic patients, sensitivity of skin biopsy appeared much higher than LEPs in diagnosing asymptomatic small fiber neuropathy in ALS patients.


References

[1] Weis J, Katona I, Müller-Newen G, Sommer C, Necula G, Hendrich C, Ludolph AC, Sperfeld AD. Small-fibre neuropathy in patients with ALS. Neurology 2011; 76:2024–2029.

[2] Truini A, Biasiotta A, Onesti E, et al. Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J Neurol 2015; 262: 1014–1018.

[3] Dalla Bella E, Lombardi R, Porretta-Serapiglia C, Cianoa C, Gellera C, Pensato V, Cazzato D, Lauria G. Amyotrophic lateral sclerosis causes small fiber pathology. European Journal of Neurology 2016; 23: 416–420.

[4] Lauria G, Hsieh ST, Johansson O, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. J Peripher Nerv Syst 2010; 15: 79–92.

