

IN VITRO AGGREGATION ASSAY OF THE TRANSACTIVE RESPONSE (TAR) DNA-BINDING PROTIEN OF 43-kDa (TDP-43).

Carlo Scialò, MD¹, Claudia Caponnetto, MD¹, Giovanni Luigi Mancardi, MD¹, Nicole Kerlero De Rosbo, PhD¹, Antonio Uccelli, MD¹, Edoardo Bistaffa, PhD², Emanuela Maderna, BSc³, Giorgio Giaccone, MD³, Fabrizio Tagliavini, MD³, Fabio Moda, PhD³.

1. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, Genova, Italy; 2. Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy; 3. Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy.

INTRODUCTION

Aggregated forms of the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) are the major neuropathological hallmark in the central nervous system (CNS) of patients with Frontotemporal Lobar Degeneration (FTLD-TDP) and Amyotrophic Lateral Sclerosis (ALS), also defined as TDP-43proteinopathies (1). Aggregated pathological TDP-43 is ubiquitinated, phosphorylated and proteolytically cleaved into C-terminal fragments. Several studies have demonstrated that TDP-43 is able to misfold and transmit its abnormal conformation in a prion-like manner (2). An important assay, named Real Time Quaking Induced Conversion (RT-QuIC), has been developed in the prion field with the aim of reproducing the misfolding process in vitro. RT-QuIC is an ultrasensitive assay, able to detect trace-amount of pathological protein present in different tissues (blood, urine, CSF) used as supporting diagnostic tool for prion diseases (3).

OBJECTIVES

The aims of this work were to detect TDP-43 pathological aggregates in the brain homogenates of patients with FTLD and optimize the RT-QuIC conditions for the aggregation of recombinant TDP-43.

MATERIALS AND METHODS

Soluble or insoluble fractions (collected after sarkosyl treatment) of TDP-43 were obtained from brain homogenates of patients with FTLD. The same fractions were collected from control brains. Immunohistochemistry was performed on brain tissues using a monoclonal anti-phospho-TDP-43 antibody (Ser409/Ser410). The presence of pathological TDP-43 in both fractions was assessed by means of Western blot. RT-QuIC preliminary experiments were performed using the full length recombinant TDP-43 protein (recTDP-43^{FL}) at the concentration of 5 μ g/100 μ L. Reaction was performed alternating 1 minute of shaking to 1 minute of incubation at 37°C.

RESULTS

Western blot analysis for TDP-43 of the insoluble fractions demonstrated two positive samples among the diseased cohort with bands migrating at ~25 kDa. Two other patients demonstrated the presence of these bands with less intensity (Figure 1a). The presence of pathological TDP-43 was demonstrated only in the insoluble fraction of FTLD patients while was not found in the soluble one (Figure 1b). The pathological protein (i.e. bands at ~25 kDa) was not found in controls samples. The two positive patients demonstrated a different banding pattern that was replicated in different blot analysis. Immunohistochemistry with anti-pS409/410 monoclonal antibody confirmed the presence of TDP-43 pathological aggregates in diseased brains which resulted positive at Western blot analysis (Figure 2). The RT-QuIC conditions for the aggregation of recTDP-43^{FL} including the concentration of recombinant protein and temperature were partially optimized. The recTDP-43^{FL} showed a very fast aggregation kinetics (Figure 3) and further modifications in the experimental setting are required to slow it down (e.g. temperature, time of incubation/shaking).

Figure 1. a) Western blot analysis performed with anti-pS409/410 monoclonal antibody detected the presence of TDP-43 pathological bands at ~25 kDa in two subjects (GRN and FTD-SLA) and not in controls; two other subjects (C9ORF72_1 and C9ORF72_2) resulted positive but with a lower intensity of the signal; b) the same analysis was performed on the soluble and insoluble fractions and revealed that pathological bands were identified only in the insoluble one.

DISCUSSION

Our results confirm the ability of TDP-43 to self-aggregate and encourage further research in order to define the most appropriate setting for the use of the RT-QuIC reaction as supporting tool in the diagnosis of TDP-43-proteinopaties. In fact, once optimized, this technique could detect small quantities of pathological protein in a given sample, overcoming the limits of quantitative assays that, so far, failed in discriminating between patients and controls when using TDP-43 as a peripheral biomarker.

Figure 2. Immunohistochemistry with anti-pS409/410 monoclonal antibody confirmed the presence of intracytoplasmic TDP-43 inclusions associated with dystrophic neurites.

SUMMARY

✓ WE WERE ABLE TO EXTRACT PATHOLOGICAL TDP-43 FROM DISEASED BRAIN CONFIRMING ITS PRESENCE BY MEANS OF WESTERN BLOT ANALYSIS

✓ WE SET UP THE FIRST RT-QUIC PROTOCOL TO INDUCE recTDP-43^{FL} TO AGGREGATE (WITH THE AIM OF DETECTING TRACE-AMOUNT OF PATHOLOGICAL TDP-43)

✓ WE OBSERVED A VERY FAST AGGREGATION KINETIC OF TDP-43 BY MEANS OF RT-QUIC

✓ PATHOLOGICAL TDP-43 IN PATIENTS COULD BE ALSO AND, THUS, DETECTED IN PERIPHERAL PRESENT TISSUES

✓ FURTHER EXPERIMENTS ARE NEEDED TO OPTIMIZE THIS TECHNIQUE AND USE IT AS SUPPORTING DIAGNOSTIC TOOL FOR TDP-43 PROTHEINOPATIES (USING PERIPHERAL TISSUES OF DISEASED PATIENTS).

1. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Geser F, Martinez-Lage M, Robinson J, Uryu K, Neumann M, Brandmeir NJ, et al. s.l. : Arch Neurol., 2009, Vol. Feb;66:180-189 2. A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N. s.l. : J Biol Chem., 2011, Vol. May;286:18664-18672.

3. Advanced tests for early and accurate diagnosis of Creutzfeldt-Jakob disease. Zanusso G, Monaco S, Pocchiari M, Caughey B. s.l. : Nat Rev Neurol., 2016, Vol. May 13. doi: 10.1038/nrneurol.