THE COMBINED USE OF 3D T1- AND T2-WEIGHTED SEQUENCES IMPROVES CERVICAL CORD LESION DETECTION IN PATIENTS WITH MULTIPLE SCLEROSIS: A MULTICENTER STUDY AT 3T

L. Storelli¹, M. Aboulwafa¹, M. A. Rocca^{1,2}, P. Valsasina¹, P. Preziosa¹, M. Copetti^{1,3}, A. Rovira⁴, X. Montalban⁴, H. Kearney⁵, O. Ciccarelli⁵, L. Matthews⁶, J. Palace⁶, A. Gallo⁷, A. Bisecco⁷, C. Lukas⁸, B. Bellenberg⁸, G. Comi², M. Filippi¹

¹Neuroimaging Research Unit, Institute of Experimental Neurology; ²Dept. of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; ³Biostatistic Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy; ⁴CEM-Cat, Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁵Queen Square MS Center, UCL Institute of Neurology, London, UK; ⁶University of Oxford Hospitals Trust, Oxford, UK; ⁷Second University of Naples and Institute of Diagnosis and Care "Hermitage-Capodimonte", Naples, Italy; ⁸St Josef Hospital, Ruhr University, Bochum, Germany.

INTRODUCTION and PURPOSE

- The spinal cord is an eloquent site of the central nervous system that is frequently involved in MS.
- Cervical cord lesions are more specific for MS compared to brain lesions (Bot et al., 2002).
- Cord lesions can be found early in the course of the disease and contribute to the diagnostic process (Filippi et al., 2016).
- MR imaging of the spinal cord presents inherent difficulties that make acquisition technically challenging for spatially non-uniform magnetic field environment of the spinal cord, the small physical dimension of its cross-section, and the physiological motion related to the pulsating CSF flow, heartbeat and breathing (Stroman et al., 2014).
- In the clinical practice, cord lesions are detected on proton density or T2-weighted sagittal scans.

Tab		All MS	BMS	CIS	RRMS	SPMS	PPMS
ole 2. Consensus lesion co	STIR/DE Median (range)	743 3 (0-11)	81 3 (1-11)	54 0 (0-9)	313 3 (0-11)	195 5 (1-10)	100 4 (0-11)
	3D T1 Median (range)	745 3 (0-11)	70 3 (0-10)	60 0 (0-9)	299 3 (0-11)	204 6(1-10)	112 5 (1-11)
	Combined lesion count (STIR/DE and 3D T1) Median (range)	835 4 (0-12)	92 4 (1-12)	65 0 (0-9)	342 3 (0-11)	222 6(1-10)	114 5 (1-11)

The introduction of high-field scanners has shown that the use of T1-weighted high-resolution cord sequences may improve cord lesion detection (Nair et al., 2013).

In this study, we evaluated lesion visualization in the cervical cord on 3D T1-weighted scans *vs* T2-weighted (or short-tau inversion recovery) MRI acquired at 3.0 T in a large dataset of MS patients acquired at 6 European sites.

METHODS

Subjects. Patients were enrolled at six European centers part of the MAGNIMS network: Hospital Universitari Vall d'Hebron, Barcelona, (Spain); St. Josef Hospital Ruhr University Bochum (Germany); Queen Square MS Centre, UCL Institute of Neurology, London (UK); Neuroimaging Research Unit, San Raffaele Scientific Institute, Milan (Italy); University of Oxford Hospitals Trust, Oxford, (UK); the MRI Center "SUN-FISM", Second University of Naples, Naples (Italy).

 Table 1 summarizes the main demographic and clinical characteristics of the patients enrolled.

	All MS	BMS	CIS	RRMS	SPMS	PPMS
Patients	203	19	32	95	37	20
Sex (F/M)	120/83	9/10	21/11	61/34	23/14	6/14
Age [y] (SD)	43.5 (12.0)	44.5 (7.7)	34 (8.8)	40.8 (11.9)	52.2 (8.8)	53.8 (8.2)
Median EDSS (range)	2.5 (0-8)	1.5 (1-3)	1.5 (0-4)	2.6 (0-6)	5.9 (3-8)	6.0 (3-8)
Disease Duration [y] (SD)	12.5 (9.5)	18.8 (3.6)	0.9 (0.58)	8.6 (7.0)	21.6 (10.6)	12.6 (5.3)

Abbreviations: BMS=benign multiple sclerosis; CIS=clinically isolated syndromes; RR=relapsing-remitting; SP=secondary progressive; PP=primary progressive; EDSS=expanded disability status scale; F=female; M=male; SD=standard deviation.

MRI Acquisition.

Cervical cord MRI scans were obtained using 3.0 Tesla scanners at all sites (Barcelona: Siemens Trio; Oxford: Siemens Prisma; Bochum, London and Milan: Philips Achieva; Naples: GE Signa). The following cervical cord sequences were obtained: sagittal dual-echo turbo-spin-echo (TSE) (London, Oxford); sagittal short tau inversion recovery (STIR) (Barcelona, Bochum, Milan, Naples); and sagittal 3D T1-weighted magnetization-prepared rapid acquisition gradient echo (MP-RAGE) scan (all sites). **Figure 2.** Illustrative examples of cord lesions, which were matching or mismatching between sequences:

- (A) Matched lesion between STIR and 3D T1 (located in the lateral column).
- (B) Mismatched lesion, clearly visible on 3D T1, but hardly visible on STIR.
- (C) Mismatched lesion with indefinite
- borders, clearly visible on STIR, but hardly visible on 3D T1.

Table 3. Total and median number of lesions detected by each rater on the different sequence combinations.

	STIR/ DE lesions	3D T1 lesions	Combined STIR/DE + 3D T1	p *	p**	p***
ater 1 – total	685	698	763	-	-	-
ater 1 – median (range)	3 (0-12)	3 (0-10)	3 (0-12)	0.43	0.0004	<0.001
ater 2 – total	717	708	746	-	-<0.001	-
ater 2 – median (range)	3 (0-11)	3 (0-11)	3 (0-11)	0.43		<0.001

*3D T1 vs STIR; **combined vs STIR; ***combined vs 3D T1

The results of mixed model analysis showed no difference in the mean number of lesions detected using STIR/DE alone and 3D T1 alone (p=0.83). Conversely, the number of lesions detected using the two sequences together was higher than compared with STIR/DE (p<0.001) and 3D T1 (p<0.001).

Figure 3. Distribution of cord lesions in the transverse section (A) and along the cranio-caudal axis (B) of the cervical cord.

Figure 1. Intra- and inter-rater MRI analysis of cord lesions.

Focal Lesion Analysis: 1) lesion count (from top of C2 to the lower border of C7);

2) rating of lesion cervical level;
 3) rating of the number of involved cord segments;

4) axial localization (reformatting3DT1 into axial view using Jim6.0 software).

Two raters, blindly, evaluated cord lesions, using STIR/DE only, 3D T1 only, and then STIR/DE and 3D T1 together.

A final consensus agreement on lesion count and location was made (Figure 1).

Statistical Analysis.

Inter-observer agreement on lesion number: concordance correlation coefficient (CCC) on each sequence, separately, and on the two sequences, used together.

- The number of lesions detected by each rater on STIR/DE, 3D T1, separately, and on STIR/DE and 3D T1 together was compared using a t test for paired samples. Lesion counts were compared between sequences using mixed effect models with unstructured covariance matrix, adjusted for site. Inter-sequence agreement on lesion location (expressed in terms of cervical cord level) was assessed using the Cohen's kappa index.
- Correlations between lesion counts and clinical variables: Spearman's Rank correlation coefficient.

Cervical cord Column

- Total lesion count correlated significantly with EDSS (r=0.39, p<0.001) and disease duration (r=0.44, p<0.001).
- The number of lesions located in the lateral, posterior and anterior columns correlated with clinical variables (highest correlation for lateral cord lesions: r=0.43 and 0.42, p<0.001).
- In RRMS, total cord lesions, lateral cord lesions and posterior cord lesions were correlated with EDSS and disease duration (EDSS: r=range 0.30-0.26, p=range 0.003-0.014, disease duration: r=range 0.39-0.37, p=range 0.001-0.002).
- In PPMS, trend toward a correlation between lesion counts and clinical variables (p=0.08).

CONCLUSIONS

- 3D T1 sequence at high field is sensitive in visualizing MS-related cord abnormalities, also in a multicenter context. Lesion detection on 3D T1 is reliable (high agreement between the two raters).
 - When used in combination with conventional sequences (STIR/DE), the sagittal 3D T1 scan allows to detect a higher number of cord lesion and improves their localization.
 - The improved ability of 3D T1 in localizing lesions in the transverse cord section might help diagnosis and might ameliorate correlations with disability.

REFERENCES

• Bot JCJ, Barkhof F, Lycklama AN, et al., *Radiology* (2002).

