## NeuromyelitisOptica (NMO) e NeuroMyelitisOptica Spectrum Disorder

# (NMOSD): a joint study by two centres

\*F. Bortolon, \*\*C.Zuliani

\*Multiple Sclerosis S.Bortolo Hospital – Vicenza \*\*Operative Unit of Neurology – Mirano (Ve)

### **Introduction:**

>NeuromyelitisOptic (NMO) is an immune-mediated disease, which is histopathologically characterized by astrocytic damage, demyelination, neuronal loss and often pronounced necrosis in the Central Nervous System (CNS).

 $\geq$  It mainly affects the optic nerves and spinal cord.

 $\geq$  The major progress in the diagnosis of NMO is tied to the discovery (in 2004) of the antibodies to channel aquaporin-4 (AQP4), which are highly specific and have a pathogenetic role.

 $\geq$ Some patients affected by NMO and NeuromyelitisOptica-Spectrum Disorder (NMOSD), AQP4-negative, present anti-MOG antibodies in the serum.

>Long considered a clinical variant of Multiple Sclerosis (MS), actually the disease is clearly distinguished form MS: 1) it affects females more than males with a 9:1 ratio (MS 2.5:1), and the age of onset is 10 years later than MS; 2) Optic Neuritis (ON) causes a more severe visual loss; 3) myelitis can be complete, associated with paraplegia or quadriplegia, caracterized by poor or no recovery; 4) Imaging tipically shows longitudinally extensive lesions spanning three or more vertebral segments (see also Fig. 1 and Tab 1).  $\triangleright$ Recently the International Panel for NMO Diagnosis (IPND) has revisited NMO diagnostic criteria (Tab 2). >A curative treatment for NMO does note exist to date. Instead, the main treatment goals are: 1) remission and improvement of relapse-associated symptoms; 2) long-term stabilization of disease course by means of relapse prevention; 3) symptomatic therapy of residual symptoms (see Fig. 2).

|                                        | Devic's disease                                      | Multiple sclerosis                                |  |  |
|----------------------------------------|------------------------------------------------------|---------------------------------------------------|--|--|
| Distribution of symptoms and<br>signs  | Restricted to the optic nerves<br>and spinal cord    | Any white-matter track                            |  |  |
| Attack severity                        | Usually severe                                       | Usually mild                                      |  |  |
| Head MRI                               | Usually normal/non-specific<br>changes               | Multiple periventricular white-<br>matter lesions |  |  |
| Cord MRI                               | Longitudinally extensive central<br>necrotic lesions | Multiple small peripheral<br>lesions              |  |  |
| CSF cells                              | Pleocytosis during attacks                           | Rarely > 25 white cells                           |  |  |
| Oligoclonal bands                      | Usually absent                                       | Usually present                                   |  |  |
| Permanent disability                   | Usually attack-related                               | Usually in late progressive phase                 |  |  |
| Female patients                        | 80 - 90%                                             | 60-70%                                            |  |  |
| Coexisting autoimmunity                | Frequent (30-40%)                                    | Less common                                       |  |  |
| Serum neuromyelitus optica<br>antibody | Present                                              | Absent                                            |  |  |

#### Tab. 1:Differential diagnosis between NMO/NMOSD and MS

Diagnostic criteria for NMOSD with AQP4-IgG

1. At least 1 core clinical characteristic

Positive test for AQP4-IgG using best available detection method (cell-based assay strongly recommended

Exclusion of alternative diagnoses

ostic criteria for NMOSD without AQP4-IgG or NMOSD with unknown AQP4-IgG status At least 2 core clinical characteristics occurring as a result of one or more clinical attacks and meeting all of the following requirements:

a. At least 1 core clinical char must be optic neuritis, acute myelitis with LETM, or



>In this study we conducted a two centres retrospective analysis of a series of patients with NMO/NMOSD

#### Materials and Methods: (see also Tab. 3).

- $\succ$ We have analyzed clinical data of 6 pts, all females
- >Aged between 46 and 73 years
- >Mean disease duration between 3 and 7 years (mean 4.7 years)
- $\geq$  2 pts met the 2015 criteria for NMO, 4 for NMOSD.
- $\geq$ 1 pts had a debut with complex partial seizures, followed by ON and 3 recurrent attacks of transverse myelitis; 1 patient had 4 ON.
- $\rightarrow$  All pts were AQP4-IgG positive.
- $\geq$  2 pts were naive to treatment (1 Rituximab and 1 Azathioprine).

 $\geq$ 4 pts, who have been already treated with first-line (IV Methylprednisolone, Plasma Exchange, IVIG, Azathioprine) and second-line (Cyclophosphamide) drugs with poor response, begun Rituximab (3 pts) and IVIG (1 pt. in whom the therapeutic choice was motivated by the simultaneous presence of a breast lump, a cystadenoma and a neuroendocrine tumor of the pancreas).

#### **Results:** (see also Tab. 3)

>During treatment with Rituximab (6, 5 and 9 cycles respectively) 3 patients were relapse-

Fig. 1: Typical MRI spinal cord imaging showing longitudinally extensive lesions spanning three or more vertebral segments

- area postrema syndrome
- b. Dissemination in space (2 or more different core clinical characteristics)
- c. Fulfillment of additional MRI requirements, as applicable
- Negative tests for AQP4-IgG using best available detection method, or testing unavailable Exclusion of alternative diagnoses"
- **Core clinical characteristics**
- 1. Optic neuritis Acute myelitis
- 3. Area postrema syndrome: episode of otherwise unexplained hiccups or nausea and vomiting
- Acute brainstem syndrome
- Symptomatic narcolepsy or acute diencephalic clinical syndrome with NMOSD-typical diencephalic MRI lesions (figure 3)
- 6. Symptomatic cerebral syndrome with NMOSD-typical brain lesions (figure 3)

Additional MRI requirements for NMOSD without AQP4-IgG and NMOSD with unknown AQP4-lgG status

- 1. Acute optic neuritis: requires brain MRI showing (a) normal findings or only nonspecific white matter lesions, OR (b) optic nerve MRI with T2-hyperintense lesion or T1-weighted gadoliniumenhancing lesion extending over >1/2 optic nerve length or involving optic chiasm (figure 1)
- Acute myelitis: requires associated intramedullary MRI lesion extending over ≥3 contiguous
- segments (LETM) OR ≥3 contiguous segments of focal spinal cord atrophy in patients with history compatible with acute myelitis (figure 1)
- Area postrema syndrome: requires associated dorsal medulla/area postrema lesions (figure 2) Acute brainstem syndrome: requires associated periependymal brainstem lesions (figure 2)

Abbreviations: AQP4 = aquaporin-4; IgG = immunoglobulin G; LETM = longitudinally extensive transverse myelitis lesions; NMOSD = neuromyelitis optica spectrum disorders.

Tab. 2: NMOSD diagnostic criteria for adult patients



Fig. 2: Established and emerging long-term treatments for NMO/NMOSD according to the therapeutic target

free, with improvement in EDSS from baseline for 2 of them (from 6.5 to 5.5 and from 6.5 to 3.5 respectively) and stabilization for 1 (EDSS = 7.5).

 $\succ$ None of them showed side effects.

>1 patient (EDSS 8.0) had a relapse (at a repopulation of CD19) and sepsis, for which she interrupted the therapy.

 $\succ$ The patient treated with IVIG showed two additional spinal cord relapses, so she is waiting to start Rituximab.

>The patient treated with Azathioprine has started the treatment too recently in order to assess its effectiveness.

#### **Conclusions:**

 $\geq$ In our experience Rituximab has proven to be a safe and effective drug in reducing relapses and improving or stabilizing disability.

 $\geq$  We stress the need to accurate monitor B-cell repopulation.

>In selected cases, mainly in presence of comorbility, IVIG, which are relatively safe compared to other immunotherapies, my represent a treatment option to prevent relapses.

|                                    | PM                   | SD      | RM                     | SS     | MZ               | GD      |
|------------------------------------|----------------------|---------|------------------------|--------|------------------|---------|
| Sex                                | F                    | F       | F                      | F      | F                | F       |
| Age                                | 55                   | 50      | 53                     | 73     | 57               | 42      |
| Disease<br>duration                | 6                    | 3       | 5                      | 3      | 5                | 7       |
| AQP4-IgG<br>status                 | +                    | +       | +                      | +      | +                | +       |
| myelitis                           | +                    | +++     | ++                     | ++     | +++              | -       |
| cerebral<br>syndrome               | +                    | -       | -                      | -      | +                | -       |
| Optic<br>Neuritis                  | ++++                 | -       | -                      | +      | +                | ++++    |
| Therapies<br>pre-RTX               | GA, MP,<br>Cyc, PLEX | MP, Cyc | MP, IVIg,<br>PLEX, Cyc | Naive  | MP, AZA,<br>IVIg | GA, Aza |
| N. RTX<br>courses                  | 6                    | 5       | 9                      | 3      | -                | -       |
| Relapses<br>before last<br>therapy | 2                    | 1       | 2                      | 1      | 4                | 4       |
| Relapses<br>during RTX             | 0                    | 0       | 0                      | 1 (ON) | -                | -       |
| EDSS<br>before last<br>therapy     | 6.5                  | 6.0     | 7.5                    | 8.0    | 2.0              | 3.0     |
| EDSS<br>during RTX                 | 5.5                  | 3.5     | 7.5                    | 8.0    | -                | -       |
| CD19<br>during RTX                 | 0                    | 0       | 0                      | 1%     | -                | -       |

Tab 3: demographics and disease charatcteristics pre- and post Rituximab (RTX) or others therapies. GA = Glatiramer Acetate; MP = Methylprednisolone; PLEX = plasma exchange; Cyc = Cyclophosphamide;Aza = Azathioprine

#### **References:**

- 1. Trebst C et al. Update on the diagnosis and treatment of neuromyelitis optica: Recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014; 261: 1-16
- 2. Wingerchuk D M et al. International consensus diagnostic criteria for neuromyelitisoptica spectrum disorders. *Neurology*. 2015; 85: 177-189
- 3. Sellner J et al. EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur J Neurol. 2010;17: 1019-1031.
- 4. Collongues N et al. An update on the evidence for the efficacy and safety of rituximab in the management of neuromyelitis optica. Ther Adv Neurol Disord. 2016; 9:180-183
- 5. Viswanathan S et al. Intravenous immunoglobulin may reduce relapse frequency in neuromyelitisoptica. *Journal of Neuroimmunology* 2015; 282:92-96

### XLVII CONGRESSO NAZIONALE 22-25 OTTOBRE 2016 – VENEZIA



