# The Free and Cued Selective Reminding Test distinguishes dementia with Lewy bodies from Alzheimer's disease in the early stage

Cinzia Bussè<sup>1,2</sup>, Giulia Camporese<sup>2</sup>, Alice Rossi<sup>2</sup>, Giovanni Zorzi<sup>2</sup>, Federica Fragiacomo<sup>2</sup>, Paolo Caffarra<sup>3</sup>, Annachiara Cagnin <sup>1,3</sup>

<sup>1</sup> Department of Neurosciences, Psychology, Pharmacology and Child Health, NEUROFARBA, University of Florence <sup>2</sup> Department of Neurosciences, University of Padova, Padova, Italy <sup>3</sup> Department of Medicine and Surgery, University of Parma, Parma, Italy 4IRCCS San Camillo, Hospital Venice, Venice, Italy

#### Objective

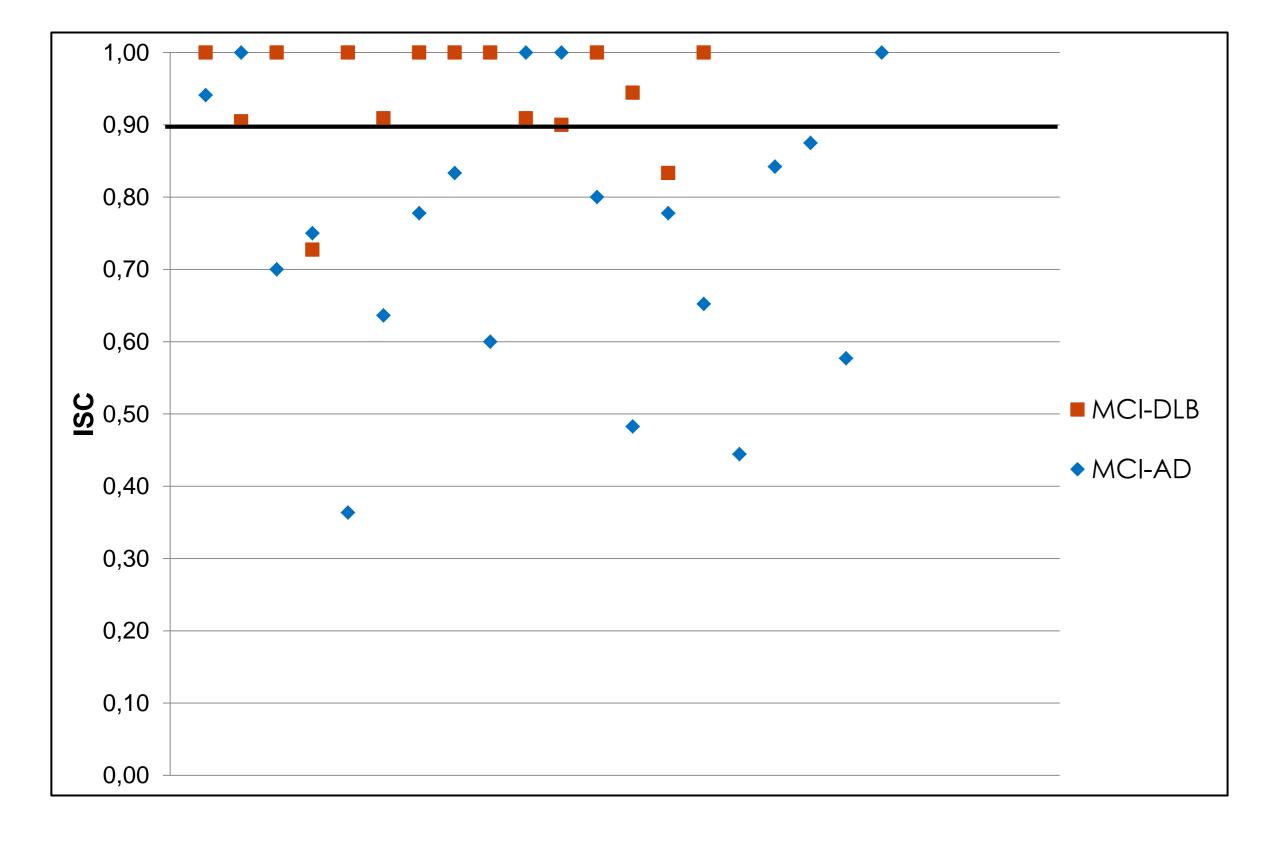
To comprehend the efficacy of the Free and Cued Selective and Reminding test (FCSRT) in differentiating patients with mild cognitive impairment converting to dementia with Lewy bodies (MCI-DLB) from patients with MCI due to Alzheimer's disease (MCI-AD).

#### Materials and methods

Thirty-five participants with MMSE > 26 were included in the study. Fifteen were ultimately diagnosed as probable DLB (MCI-DLB: n=15) and twenty as probable AD (MCI-AD: n=20) according to current criteria (Ferman et al. 2013; Albert et al. 2011) after three years of follow-up. At baseline patients underwent a comprehensive cognitive evaluation including the FCSRT for the assessment of episodic memory.

#### Results

In the FCSRT, MCI-DLB performed better than MCI-AD at the Immediate Total Recall (ITR) (DLB=35.13±1.26; AD=29.95±1.08, p=0.01) and at the Index of Sensitivity of Cueing (ISC; Fig. 1, 2) (DLB=0.94±0.04; AD=0.76±0.04, p<0.001). Moreover, MCI-DLB performed worse than MCI-AD in the digit cancellation task (DLB=45.49±1.43;  $AD=49.83\pm1.22$ ; p=0.03), number of angles of the MMSE pentagons copy (DLB=3.11\pm0.17; AD=3.72\pm0.15; p=0.01) and Rey figure copy (DLB=23.77\pm1.47; AD= 27.90\pm1.26; p=0.01) p=0.05). Scores of the neuropsychological tests are shown in **Tab. 2**.


| Tab 1. Characteristics of the population (Bold * p values indicate statistical |
|--------------------------------------------------------------------------------|
| significance)                                                                  |

| Demographics           | <b>MCI-DLB</b><br>(n=15) | <b>MCI-AD</b><br>(n=20) | p      |
|------------------------|--------------------------|-------------------------|--------|
| Gender (m/f)           | 7/8                      | 9/11                    | 0.92   |
| Age                    | 74.60±4.26               | 69.55±10.08             | 0.05   |
| Education              | 10.20±4.13               | 12.45±4.02              | 0.12   |
| MMSE (M ± SE)          | 26.80 ± 1.27             | 27.15 ± 1.39            | 0.44   |
| νн                     | 54.5%                    | 0.0%                    | 0.00 * |
| Parkinsonism           | 63.6%                    | 0.0%                    | 0.00 * |
| Cognitive fluctuations | 63.6%                    | 0.0%                    | 0.00 * |

Fig 2. Distribution of Index of Sensitivity of Cueing (ISC) values in MCI-DLB and MCI-AD. ISC cut-off of normality< 0.90

## Tab 2. Neuropsychological tests of patients with MCI-DLB and MCI-AD (Bold \* p values indicate statistical significance)

| Cognitive tests         | <b>MCI-DLB</b><br>(n=15) | <b>MCI-AD</b><br>(n=20) | n         |
|-------------------------|--------------------------|-------------------------|-----------|
|                         | M ± SE                   | M ± SE                  | р<br>0.44 |
| MMSE (raw score)        | 26.80 ± 1.27             | 27.15 ± 1.39            | 0.44      |
| QSPT (Number of angles) | 3.11 ± 0.17              | 3.72 ± 0.15             | 0.01 *    |
| Attentional Matrices    | 45.49 ± 1.43             | 49.83 ± 1.22            | 0.03 *    |
| Trail making test A, s  | 90.47 ± 9.99             | 67.65 ± 8.57            | 0.10      |
| Fluency                 |                          |                         |           |
| Phonemic                | 29.06 ± 2.48             | 31.48 ± 2.18            | 0.49      |
| Semantic                | 32.99 ± 2.75             | 31.70 ± 2.42            | 0.74      |
| Digit span              |                          |                         |           |
| Forward                 | 5.52 ± 0.28              | $5.31 \pm 0.24$         | 0.59      |
| Backward                | 3.68 ± 0.26              | 3.49 ± 0.22             | 0.61      |
| Prose memory            |                          |                         |           |
| Immediate recall        | 9.11 ± 1.19              | 7.49 ± 1.12             | 0.35      |
| Delayed recall          | 9.19 ± 1.40              | 7.95 ± 1.31             | 0.54      |
| ROCF                    |                          |                         |           |
| Сору                    | 23.77 ± 1.47             | 27.90 ± 1.26            | 0.05      |
| Delayed recall          | 9.98 ± 1.56              | 8.32 ± 1.34             | 0.44      |
| Clock drawing           | 6.47 ± 0.84              | 7.42 ± 0.76             | 0.43      |
| FCSRT                   |                          |                         |           |
| IFR                     | 22.47 ± 2.04             | 18.14 ± 1.75            | 0.13      |
| ITR                     | 35.13 ± 1.26             | 29.95 ± 1.08            | 0.01 *    |
| DFR                     | 7.46 ± 1.02              | 5.56 ± 0.87             | 0.18      |
| DTR                     | 11.24 ± 0.52             | $10.02 \pm 0.45$        | 0.10      |
| ISC                     | $0.94 \pm 0.04$          | 0.76 ± 0.04             | 0.00 *    |



MMSE: Mini Mental State Examination; QSPT: Qualitative Scoring Pentagon Test; ROCF: Rey-Osterrieth Compex Figure; FCSRT: Free and Cued Selective Reminding Test; IFR: Immediate Free Recall; ITR: Immediate Total Recall; DFR: Delayed Free Recall; DTR: Delayed Total Recall; ISC: Index of Cues Sensitivity.

### Discussion

At early stages DLB showed to benefit more than AD from the controlled learning through category cues, exhibiting a greater ISC. Deficit of memory consolidation is characteristic of MCI-AD while in MCI-DLB memory difficulties result from ineffective recall strategies in controlled encoding conditions. Poorer performances in attentive and visuo-constructional tasks in DLB respect to AD were confirmed even at the MCI stage.

### Conclusion

## The **FCSRT** can be used to distinguish between **DLB** and **AD** at early stages.

## Acknowledgements: The current work is supported by AIRAIzh Onlus-COOP Italia