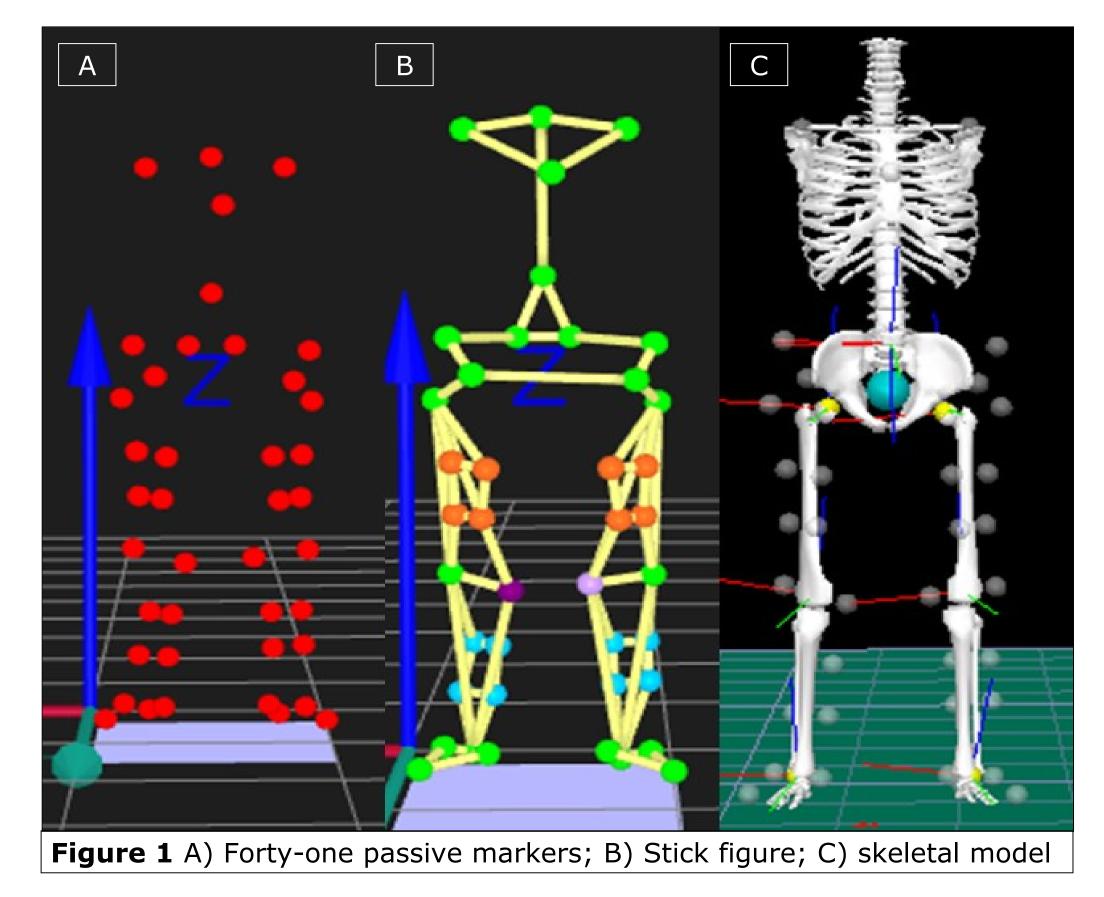
In fully ambulatory RR-MS patients, 3D gait analysis may detect wors parameters of stability compared to HC.

<u>M. Liparoti¹</u>, M. Della Corte^{2,3}, R. Rucco¹, R. Minino¹, A. Liccardo¹, R. Capuano², G. Sorrentino^{1,4}, S. Bonavita^{2,3}

1 Department of Motor Sciences and Wellness, University of Naples Parthenope, Naples, Italy 2 Department of Medical, Surgical, Neurological Metabolic and Aging Science, University of Campania Luigi Vanvitelli, Naples, Italy 3 MRI Research center SUN-FISM, Institute of Diagnosis and Cure (IDC), Hermitage-Capodimonte, Naples, Italy 4 Institute of Diagnosis and Cure (IDC) Hermitage-Capodimonte, Naples, Italy


HERMITAGE CAPODIMONTE Istituto di Diagnosi e Cura

lla Campani:

Objectives

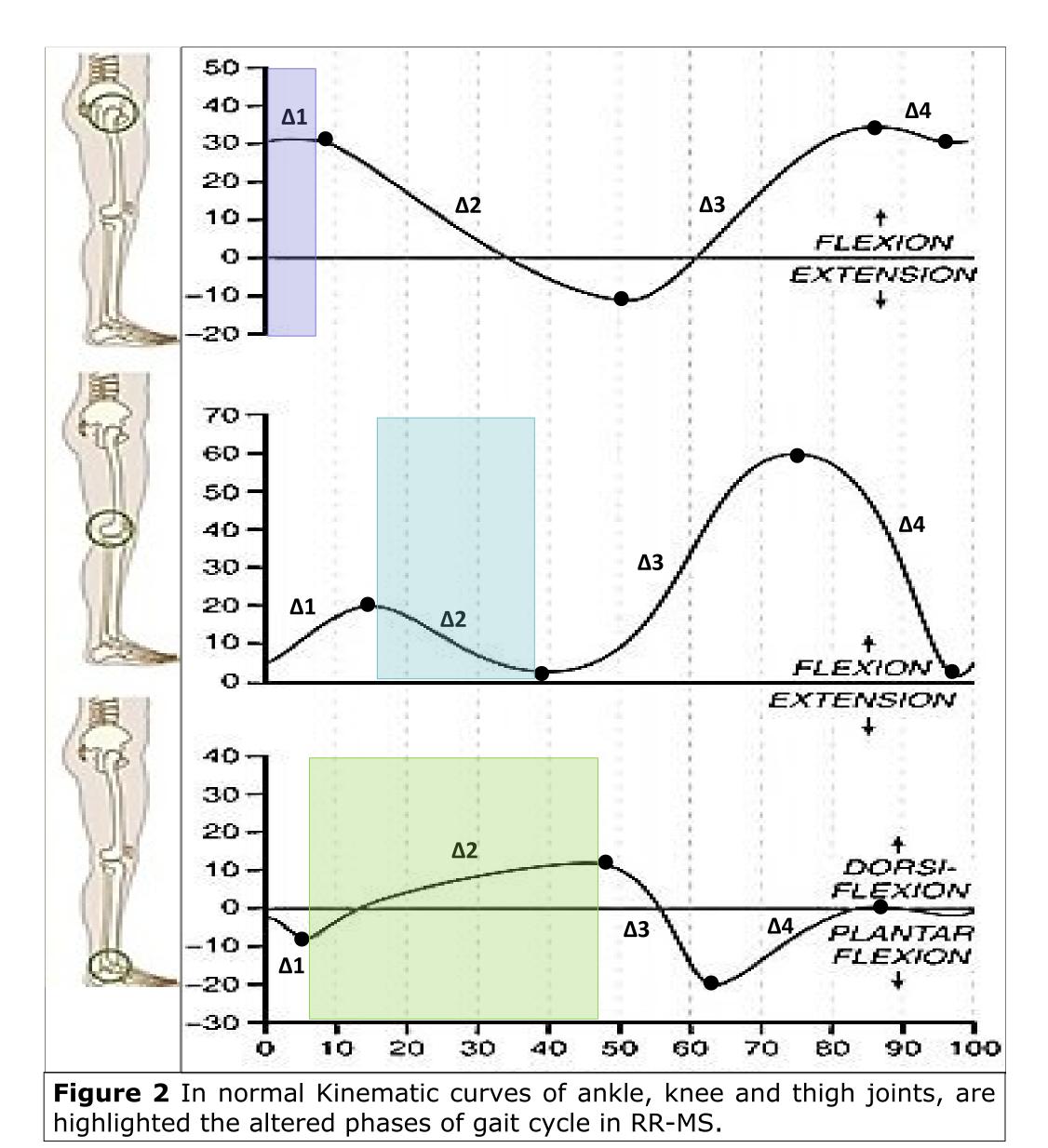
Aims of our study were to detect changes in gait patterns in fully ambulatory patients with relapsing-remitting Multiple Sclerosis(RR-MS) and to evaluate correlations between motor and cognitive functions using a 3D gait analysis approach.

Methods

29 RR-MS patients (mean age: 37.3 ± 10 years; BMI: 23.7 ± 3.6 kg/m²; EDSS: 2±0.9) and 22 age-BMI matched healthy controls (HC) were enrolled. The gait parameters were recorded with a Stereophotogrammetric Qualysis System (240Hz), after placing forty-one passive markers on the body according to a modified Davis protocol. Cognitive functions were evaluated through the Rao brief repeatable battery (Rao-BRB).

The participants underwent 3D gait analysis in three conditions:

1) single-task (walk at self-selected speed);


2) motor dual-task (walking while carrying a tray with two glasses filled with water);

3) cognitive dual-task (walking while serially subtracting seven digits starting from 100).

For all conditions, kinematic and spatio-temporal parameters (including the coefficients of variability, CV) were calculated. The latter were divided into velocity and stability parameters.

Results

The RR-MS patients, compared to HC, showed during single-task an impairment of stability parameters including stance time $(p \le 0.05)$, stance time CV $(p \le 0.05)$ and swing time $(p \le 0.01)$. An increased degree of ankle dorsal-flexion was also observed $(p \le 0.05)$. The cognitive dual-task determined an increase of instability (swing time CV, $p \le 0.05$; double limb support, $p \le 0.05$;

DLS/SLS, $p \le 0,01$) and kinematic parameters (ankle dorsalflexion, $p \le 0.05$; thigh flexion, $p \le 0.05$). The motor dual-task induced a significant increasing of instability parameters in RR-MS patients (stance time, $p \le 0.05$; stance time CV, $p \le 0.01$; swing time CV, $p \le 0.05$; double limb support and its CV, $p \le 0.05$). Furthermore, the motor dual-task induced reduction of the knee extension and increased thigh flexion ($p \le 0.05$). Finally, an inverse correlation between cognitive performances and parameters of stability was observed.

Conclusions

In fully ambulatory RR-MS patients, 3D gait analysis may detect a worsening in stability parameters compared to HC. The worsening of motor pattern during cognitive or motor dual-tasks and the inverse correlation between cognitive performance and gait stability suggests a role of cognition in affecting gait in RR-MS patients.

The study shows that 3D-Gait Analysis is a useful tool to document very slight motor impairment in patient with RR-MS. This approach might be useful in clinical trials to refine the clinical evaluation.

Bibliografy

[1] R. Rucco, et al. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer's disease through 3D motion capture. Gait & Posture 2017; Vol 52:312-317.

[2] J. J. Sosnoff et al. Mobility and cognitive correlates of dual task cost of walking in persons with multiple sclerosis. Disabil Rehabil, 2014; Vol 36(3): 205-209

[3] Roy B. Davis III et al. A gait analysis data colletion and reduction tecnique. Human Moviment Science 1991; Vol 10: 575-587

E-mail: motionlab@uniparthenope.it

WebPoster http://congress.wooky.it/NEURO2017/