CLINICAL HETEROGENEITY OF BING-NEEL SYNDROME. A SINGLE-CENTER EXPERIENCE

A PICCA¹, L DIAMANTI¹, G BERZERO¹, P BINI¹, L FARINA², M VARETTONI³, E MARCHIONI¹

¹Department of Neuroncology, C. Mondino National Neurological Institute, Pavia, Italy

²Department of Neuroradiology, C. Mondino National Neurological Institute, Pavia, Italy

³Department of Hematology, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy

Introduction

Bing Neel syndrome (BNS) is a rare form of Waldenström's macroglobulinemia (WM) resulting from direct infiltration of central nervous system by tumoral lymphoplasmacytic cells.

It includes a **diffuse form** (lymphoid cell infiltration of leptomeninges and perivascular spaces) and a tumoral form (uni- or multifocal parenchymal infiltration, usually in the deep hemispheric white matter)1. BNS is mostly diagnosed in patients with a progressing WM, but it may occur during systemic remission or even be the presenting symptom in patients without history of WM^{2,3}. Diagnosis can be established on a direct **biopsy** or **CSF analysis** with evidence of **B-cell clonality** and/or MYD88 mutation^{1,4}.

Here we report four cases of Bing Neel syndrome from our center experience.

Fig. A: T1 sagittal post Gd thickening shows and enhancement of spinal leptomeninges and cauda equina roots

Results

In **Table 1** are summarized patients' characteristics. Male sex was predominant and mean age was 58 years. Clinical presentation was heterogeneous. Only one patient had a diagnosis of lymphoplasmocytic lymphoma at symptoms onset. In MRI, diffuse pattern was the most common. Of note, in one patient leptomeningeal carcinomatosis manifested as normal pressure hydrocephalus.

CSF immunophenotyping showing B-cells clonality and presence of MYD88 mutation confirmed diagnosis in patients without history of hematological malignancy. One patient also showed anti-MAG antibodies positivity. Patient#1 also had amiloidosis.

3 patients out of 4 had 6 cycles of rituximab-bendamustine plus intrathecal methotrexate as first line therapy. The remaining patient showed refractority to different polychemotherapy lines before starting the bendamustine - methotrexate scheme. All of them showed at least a partial response, but 3 patients relapsed. Patient #4 had a distant tumoral progression (involvement of the thalamus). Three patients are currently on second-line treatment with BTK inhibitor Ibrutinib.

Fig. marked ventricular dilatation, disproportioned to sulcal enlargement

B: FLAIR axial shows Fig. C: T1 axial post Gd shows cortico-subcortical right mesial temporal lesion with inhomogeneous enhancement

#2	F, 60	No	Sensitive ataxia, four-limbs paresthesias	diffuse		CE of conus and	lgM k (7.3)	68	107	presence of clonal B-cell population	yes	yes	Mixed demyelinating- axonal sensorimotor polineuropathy	R-bendamustine + intrathecal MTX 6 cycles	PR	yes (CNS only)	Ibrutinib
#3	M, 64	No	Cognitive and balance impairment	diffuse	Tetraventricular hydrocephalus (Fig. B)	n/p	IgM k (3.0)	95	101	presence of clonal B-cell population	yes	no	Normal	R-HyperCVAD (not tolerated) → R-bendamustine 6 cycles + intrathecal MTX 9 cycles	CR	yes (CNS only)	Ibrutinib
#4	M, 39	Yes	Seizures	tumoral	Temporomesial CE lesion, optic nerves CE, leptomeningeal CE (Fig. C)	n/p	lgG k	n/a	n/a	No detectable lymphoid cells	n/p	n/p	Normal	R-ICE → HyperCVAD → bendamustine + intrathecal MTX 6 cycles	CR	yes (CNS only)	Ara-C → WBR (24 Gy) → ibrutinib

Table 1. Ab=antibodies, CE=contrast enhancement, R=rituximab, MTX=methotrexate, CR=complete response, PR=partial response, CNS=central nervous system, Ara-C=cytarabine, WBR=whole brain radiation, n/p=not performed, n/a=not available

Conclusions

Bing-Neel Syndrome (BNS) is uncommon, but it should always be considered when **neurological symptoms** appear in patients with **diagnosis of WM**. Nevertheless, it should be investigated even in patients without a known hematological malignancy, when symptoms are associated with a **serum IgM monoclonal component**.

MRI imaging and **CSF analysis** with flow cytometric immunophenotyping and search for MYD88 mutation can confirm diagnosis. Differential diagnosis include anti-MAG polyneuropathy, but they can coexist.

Systemic rituximab - bendamustine with intrathecal methotrexate is an effective therapy, but patients tend to relapse. New therapies as **ibrutinib** seem promising⁵ in relapsing patients and also for peripheral neuropathic symptoms.

Bibliography

¹Minnema, MC et al. (2017). "Guideline for the diagnosis, treatment and response criteria for Bing-Neel syndrome". Haematologica. 102 (1): 43-51.

²Simon, L et al. (2015). "Bing-Neel syndrome, a rare complication of Waldenström macroglobulinemia: analysis of 44 cases and review of the literature. A study on behalf of the French Innovative Leukemia Organization (FILO).". Haematologica. 100 (12): 1587-94.

³Castillo, JJ et al. (2016). "Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study". British Journal of Haematology. 172 (5): 709-715..

⁴Poulain, S et al. (2014). "MYD88 L265P mutation contributes to the diagnosis of Bing Neel syndrome.". British journal of haematology. 167 (4): 506–13

⁵Mason, C et al. (2016). "Ibrutinib penetrates the blood brain barrier and shows efficacy in the therapy of Bing Neel syndrome". British journal of haematology [epub ahead of

