PATTERNS OF REGIONAL GRAY MATTER AND WHITE MATTER ATROPHY IN PATIENTS STARTING FINGOLIMOD OR NATALIZUMAB: **A 2-YEAR TENSOR-BASED MORPHOMETRY STUDY**

^{1,2}M.A. Rocca, ^{1,2}P. Preziosa, ¹G.C. Riccitelli, ²M.E. Rodegher, ²L. Moiola, ³A. Falini, ²G. Comi, ^{1,2}M. Filippi.

¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, ²Dept. of Neurology and ³Dept.of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.

INTRODUCTION and PURPOSE

Natalizumab (NAT) and fingolimod (FTY) are second-line treatments approved for patients with active relapsing-remitting (RR) multiple sclerosis (MS) and they have been proven to be highly effective in reducing clinical relapses, disability progression and active lesion formation [1-10]. Pivotal trials have shown the higher benefits of both FTY and NAT over placebo or interferon ß on clinical and MRI disease activity at two years. However, only a few observational studies have explored differences on clinical and MRI activity between the two drugs, with inconsistent results [11-21]. Additionally, the topographic patterns of longitudinal gray matter (GM) and white matter (WM) modifications after treatment initiation have been investigated for NAT only [22-25].

We compared the effects of FTY and NAT on preventing regional GM and WM atrophy in RRMS after two years of treatment.

METHODS

- <u>Study design</u>: Monocentric, prospective, longitudinal, open-label, non-randomized study.
- Inclusion criteria: (a) RRMS starting treatment with FTY or NAT, according to AIFA criteria; (b) Age ≥ 18 and ≤ 60 years; (c) $EDSS \le 6.0$; (d) Stable treatment from at least three months of other concomitant symptoms (e.g., fatigue, mood disturbances).
- Esclusion criteria: (a) Contraindications to MRI; (b) Other neurological or psychiatric diseases; (c) Major medical illnesses, including renal, hepatic or cardiac disease, or diabetes mellitus; (d) Pregnancy or breastfeeding.
- Subjects. Fifty-five RRMS patients starting NAT (n=30) or FTY (n=25). All patients underwent neurological and MRI assessments before starting treatment (T0), after six months (M6), one year (Y1) and two years (Y2) (+/-7 days).
- <u>Neurological evaluation</u>: Rating of (a) clinical relapses, (b) EDSS, and (c) disability progression (EDSS score ≥ 1.0 point if baseline EDSS score was ≥ 1.0 or ≥ 1.5 points if the baseline score was 0).
- Brain MRI acquisition: 3.0 Tesla scanner: (a) dual-echo turbo spin-echo (TSE), (b) 3D T1-weighted fast field echo (FFE), and (c) post-gadolinium (Gd) T1-weighted scans. • M<u>RI analysis</u>: Quantification of number of Gd-enhancing lesions at T0, M6, Y1 and Y2 and evaluation of number of new T2hyperintense WM lesions at M6, Y1 and Y2 (Jim 6.0, Xinapse System). • Estimation of T2-hyperintense lesion volumes (LVs) at T0, M6, Y1 and Y2 (*Jim 6.0, Xinapse System*). • Quantification of normalized brain volume (NBV) at T0 and percent brain volume changes (PBVC) (SIENAx and SIENA). • Mapping regional GM and WM volumes changes: • Voxel-Based Morphometry (VBM) (T0) (SMP12, DARTEL): Transformation of GM and WM maps, obtained from segmentation, to MNI space, non linear deformation of GM/WM maps to match the final customized template, modulation to keep original volume unchanged, and smoothing (8 mm gaussian kernel). • Tensor-Based Morphometry (TBM) (longitudinal changes) (SPM12, Serial Longitudinal registration, DARTEL): Groupwise alignment among each of the subject's scans, production of a mid-point average template, evaluation of the evolution of the Jacobians at the different timepoints, and normalization to MNI space [26-27]. • **Statistical analysis**: • Non-parametric test for equality of median, Fisher's exact test, Chi-Square test and hierarchical mixed model adjusted for previous treatment: comparison of demographic, clinical and MRI measures between FTY- and NAT-groups. • <u>VBM and TBM (SPM12)</u> (p<0.05 FWE corrected): - Input images: GM and WM tissues (VBM), difference between pairs of Jacobians (TBM). -Within-group and between group comparisons: one sample and analysis of covariance (ANCOVA), using age and gender as covariates.

TBM. Figure 1.

Regional GM atrophy evolution

No GM regional volumetric modifications.

No GM regional volumetric modifications.

RESULTS

Table 1 shows the main baseline demographic, clinical and MRI characteristics of in the two cohorts of RRMS patients starting FTY or NAT.

	Variables	FTY (n=25)	NAT (n=30)	p value	
	Women/Men	15/10	18/12	n.s.^	
Table 1.	Median age (range) [years]	38.3 (19.2,53.2)	36.5 (21.6,56.9)	n.s.*	
	Median DD (range) [years]	10.3 (2.0,25.6)	8.2 (0.5,23.0)	n.s.*	
	Median EDSS score (range)	2.0 (1.0,5.5)	2.0 (1.0,6.0)	n.s.*	
	Mean ARR in the previous year (range)	1.00 (0,3)	1.20 (0,3)	n.s.*	
	Mean ARR in the previous two years (range)	0.88 (0,5)	0.82 (0,4)	0.77*	
	Last treatment before recruitment			0.003#	
	None / 1 st line DMD / FTY / NAT / Immunosuppressants	0 / 18 / 0 / 6 / 1	4 / 23 / 2 / 0 / 1		
	Median T2 LV (range) [ml]	6.3 (0.6,38.7)	5.1 (0.6,47.3)	n.s.*	
	Median Gd-enhancing lesion number (range)	0 (0,2)	0 (0,2)	n.s.*	
	Number (%) of patients free of Gd-enhancing lesions	21 (84.0%)	22 (73.3%)	n.s.#	
	Median NBV (range) [ml]	1511 (1300,1678)	1530 (1250,1711)	n.s.*	

^=Chi-Square Test

*= Non-parametric Test for equality of median

#=Fisher's exact Test

<u>Clinical findings</u>:

Table 2.

- Stabilization of EDSS score for both drugs at each timepoint, with a significant improvement of EDSS score in FTY at Y1 *vs* T0 (-0.20, p=0.02).
- Reduction of ARR after treatment initiation for both drugs compared to the year before treatment initiation (FTY=0.32 at M6, 0.24 at Y1, 0.12 at Y2; NAT=0.00 at M6, 0.03 at Y1, 0.02 at Y2, p<0.0001 for all comparisons) and in NAT vs FTY at M6 (p=0.02);
- Similar number of relapse-free patients in NAT vs FTY at M6 (100% vs 84.0%, p=0.18) and a trend for a higher number of relapse-free patients in NAT vs FTY at Y1 and Y2 (96.7% vs 76.0%, p=0.06 for both timepoints);
- No significant difference in disability progression at Y2 between the to drugs (0% in FTY vs 6.7% in NAT, p=0.11).

MRI findings: Table 2 shows the main longitudinal MRI changes during the follow-up in two cohorts of RRMS patients.

Variables		FTY (n=25)	NAT (n=30)	p value*				
Median number of new T2 lesions (range)								
	M6-T0	0 (0, 5)	0 (0, 6)	n.s.				
	Y1-M6	0 (0, 2)	0 (0, 1)	0.02				
	Y2-Y1	1 (0, 6)	0 (0, 7)	n.s.				
Number (%) of patients free of new T2 lesions								
	M6-T0	13 (52.0%)	21 (70.0%)	0.05				
	Y1-T0	10 (40.0%)	21 (70.0%)	0.003				
	Y2-T0	9 (36.0%)	20 (66.7%)	0.003				
Median number of Gd-enhancing lesions (range)								
	M6	0 (0, 1)	0 (0, 0)	n.s.				
	Y1	0 (0, 1)	0 (0, 0)	n.s.				
	Y2	0 (0, 1)	0 (0, 0)	n.s.				
Number (%) of patients free of Gd-enhancin	g lesions							
	M6-T0	24 (96.0%)	30 (100.0%)	n.s.				
	Y1-T0	23 (92.0%)	30 (100.0%)	n.s.				
	Y2-T0	23 (92.0%)	30 (100.0%)	n.s.				
Median PBVC (range)								
		-0.20 (-1.65,0.57)	-0.25 (-1.28,0.51)					
IVIO-10	p value*	0.03	0.003	n.s.				
		-0.03 (-0.68,0.73)	-0.07 (-0.93,0.56)	2				
x 1-1VI0	p value*	n.s.	0.04	n.s.				
- V2 V1		-0.30 (-1.18,0.53)	-0.22 (-1.18,0.53)	n c				
I 2- I 1	p value*	0.001	0.009	11.8.				

No regional GM/WM volume increase was detected at any timepoints.

CONCLUSIONS

- FTY and NAT are highly effective in reducing clinical relapses and MRI activity and preventing disability progression after 2 years of treatment in RRMS, with a slight superiority of NAT.
- Regional GM atrophy occurred already at M6 and progressed during the subsequent timepoints in FTY group, mainly involving the cerebellar cortex, but also some cortical and subcortical structures, while NAT-patients showed a significant atrophy of some clusters in cortical and subcortical regions only at Y2 vs Y1.
- Regional WM atrophy occurred for both treatments already at M6 and then progressed at Y1 and Y2, involving both infratentorial and supratentorial WM tracts, with a significant higher cerebellar WM atrophy in FTY compared to NAT.
- The strong anti-inflammatory effects of NAT might promote a secondary neuroprotection through a reduction of further inflammatory processes and the development of a more favourable environment to enhance tissue recovery, allowing a more significant effect on preventing regional irreversible tissue loss.
- FTY might reduce neuroinflammation and exert direct neuroprotective effects on different CNS cells, including oligodendrocytes, astrocytes, and neurons, but with possible regional differences in the effectiveness these mechanisms.
- Further studies with larger sample size and longer follow-up are warranted to confirm these results and to better understand the pathophysiologic mechanisms influencing the different pattern of GM and WM atrophy related to these treatments.

REFERENCES

1) Kappos et al., NEJM 2010

10) Havrdova et al., Lancet Neurol 2009

19) Baroncini et al., MSJ 2016

• Compared to T0, FTY patients showed a significant increase of T2-hyperintense LVs at each timepoint (p values<0.001 for all comparisons), whereas NAT patients showed a significant decrease of T2-hyperintense LVs at Y2 (p=0.01).

<u>VBM at T0.</u> At T0, no GM nor WM volume difference was found between FTY and NAT patients.

