REVISED MCDONALD 2010 VERSUS MAGNIMS 2016 MRI CRITERIA IN CIS PATIENTS SUGGESTIVE OF MS: A MULTICENTRE STUDY

^{1,2}M.A. Rocca, ^{1,2}P. Preziosa, ¹A. Meani, ³O. Ciccarelli, ⁴S. Mesaros, ⁵A. Rovira, ⁶J. Frederiksen, ⁷C. Enzinger, ^{3,8}F. Barkhof, ⁹C. Gasperini, ³W. Brownlee, ⁴J. Drulovic, ¹⁰X. Montalban, ¹¹S.P. Cramer, ⁷A. Pichler, ¹²M. Hagens, ⁹S. Ruggieri, ²V. Martinelli, ³K. Miszkiel, ¹⁰M. Tintorè, ²G. Comi, ^{1,2}M. Filippi.

¹Neuroimaging Research Unit and ²Dept. of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; ³Queen Square MS Centre, Dept. of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK and NIHR UCLH BRC; 4Clinic of Neurology, Faculty of Medicine, University of Belgrade, Serbia; ⁵Section of Neuroradiology, Dept. of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; ⁶Clinic of Optic Neuritis and Clinic of Multiple Sclerosis, Dept. of Neurology, Rigshospitalet - Glostrup, University of Copenhagen, Denmark; ⁷Dept. of Neurology, Medical University of Graz, Graz, Austria; ⁸Dept. of Radiology and Nuclear Medicine, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; ⁹Dept. of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy; ¹⁰Unitat de Neuroimmunologia Clinica, CEM-Cat, Hospital Universitari Vall d'Hebron, Barcelona, Spain; ¹¹Functional Imaging Unit, Dept. of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark; ¹²Dept. of Neurology, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.

Table 1.

Table 5.

INTRODUCTION and PURPOSE

In 2001 MRI was formally included in the diagnostic criteria for multiple sclerosis (MS) to provide objective evidence for disease dissemination in space (DIS) and time (DIT) and to exclude alternative diagnoses [1]. Since their introduction, these criteria have been modified to simplify them, to clarify specific aspects and to enable earlier diagnosis of MS [2-4]. Since their last revision (the revised McDonald 2010 criteria) [3], new evidences regarding the application of MRI for MS diagnosis become available. Modifications of MRI diagnostic criteria have been proposed in 2016 with the definition of the "MAGNIMS 2016" criteria [5], which include: 1) the removal of any distinction between symptomatic and asymptomatic lesions; 2) increasing from 1 to 3 lesions to define periventricular (PV) involvement; 3) combining "cortical/juxtacortical" lesions to expand the concept of juxtacortical (JC) involvement; and 4) adding the optic nerve (ON) as an additional lesion location.

The aim of this study was to compare the performance of the MAGNIMS 2016 criteria [5] and the revised McDonald 2010 criteria [3] for the development of clinically definite (CD) MS in a large multicente cohort of patients with a clinically isolated syndrome (CIS) suggestive of MS, collected within the MAGNIMS network. In the same cohort, the influence of each individual modification from the MAGNIMS criteria [5] was also assessed to investigate its potential contribution to future modifications of MS diagnostic criteria.

METHODS

- <u>Patients</u>. This project was run within the European MAGNIMS network (<u>http://www.magnims.eu</u>) and involved eight centres (Milan and Rome [Italy], Amsterdam [the Netherlands], Barcelona [Spain], Belgrade [Serbia], Copenhagen [Denmark], Graz [Austria], London [UK]).
- Inclusion/exclusion criteria. CIS patients recruited into prospective MRI and clinical follow-up (FU) studies with the following criteria: (a) age ≥ 16 and ≤ 60 years; (b) a first CIS suggestive of CNS demyelination [6]; (c) a typical clinical presentation of

Performance of	of the MRI	criteria	for DIS,	DIT a	and DIS	plus DIT.

Table 3 shows the performance of revised McDonald 2010 [3] and MAGNIMS 2016 [5] criteria.

Critoria	Timepoint	Sensitivity	Specificity	AUC	PPV	NPV		
Citteria		(95% CI)						
		D	IS only					
D	M36	0.91 (0.85-0.94)	0.33 (0.25-0.42)	0.62 (0.57-0.67)	0.56 (0.49-0.62)	0.79 (0.67-0.87)		
Keviseu McDonald 2010 [5]	M60	0.87 (0.80-0.91)	0.33 (0.21-0.46)	0.60 (0.53-0.67)	0.65 (0.57-0.72)	0.63 (0.47-0.76)		
MACNIMS 2016 [5]	M36	0.93 (0.88-0.96)	0.32 (0.24-0.41)	0.63 (0.58-0.67)	0.56 (0.50-0.63)	0.83 (0.71-0.91)		
MAGNINIS 2010 [5]	M60	0.90 (0.83-0.94)	0.34 (0.23-0.48)	0.62 (0.56-0.69)	0.66 (0.59-0.73)	0.70 (0.54-0.82)		
DIT alone								
	M36	0.78 (0.71-0.84)	0.44 (0.35-0.53)	0.61 (0.55-0.67)	0.58 (0.51-0.65)	0.67 (0.57-0.76)		
Revised McDonald 2010 [5]	M60	0.78 (0.71-0.84)	0.49 (0.37-0.62)	0.63 (0.56-0.71)	0.69 (0.61-0.77)	0.60 (0.48-0.70)		
MACNING 2016 [5]	M36	0.80 (0.73-0.85)	0.42 (0.33-0.50)	0.61 (0.55-0.66)	0.57 (0.50-0.64)	0.68 (0.57-0.77)		
MAGNIMS 2010 [5]	M60	0.79 (0.72-0.85)	0.46 (0.33-0.59)	0.62 (0.55-0.69)	0.68 (0.60-0.76)	0.59 (0.46-0.70)		
DIS plus DIT								
Revised McDonald 2010 [3]	M36	0.73 (0.66-0.80)	0.50 (0.42-0.59)	0.62 (0.56-0.67)	0.58 (0.51-0.65)	0.67 (0.58-0.75)		
	M60	0.72 (0.64-0.78)	0.52 (0.39-0.65)	0.62 (0.54-0.69)	0.68 (0.59-0.76)	0.56 (0.45-0.67)		
MAGNIMS 2016 [5]	M36	0.77 (0.70-0.83)	0.50 (0.41-0.59)	0.64 (0.58-0.69)	0.60 (0.52-0.67)	0.70 (0.61-0.78)		
	M60	0.76 (0.68-0.82)	0.52 (0.39-0.65)	0.64 (0.57-0.71)	0.69 (0.61-0.77)	0.60 (0.49-0.70)		

Figure 2 shows the area under the curve (AUC) over time, up to 10 years, from disease onset of the revised McDonald 2010 [3] and MAGNIMS 2016 [5] criteria according to the development of CDMS.

Table

relapsing-remitting MS [7]; (d) a complete neurological examination; (e) a baseline brain and spinal cord (SC) MRI scan obtained ≤ 3 months from the clinical onset; (f) a FU brain scan obtained ≤ 12 months from CIS onset; and (g) careful exclusion of alternative diagnoses, comorbidities (psychiatric or other neurological disorders) and/or previous clinical events suggestive of demyelination.

• <u>Study flow chart</u>. Figure 1.

- MRI and visual evoked potentials (VEP). Brain and spinal cord MRI scans had been obtained at 1.0 Tesla (4.1%), 1.5 Tesla (66.0%) or 3.0 Tesla (29.9%).
- Brain MRI scans (baseline and FU). Axial DE and/or FLAIR and post-contrast T1-weighted sequences. A double inversion recovery (DIR) sequence was available for 167/368 (45.4%) CIS patients from three centres (Barcelona, Belgrade and Milan).
- Spinal cord MRI scans (baseline). Sagittal short tau inversion recovery (STIR) and/or T2-weighted and post-contrast T1weighted sequences, covering the cervical and thoracic cord.
- ON involvement. Assessment of ON involvement was performed in 241 (65.5%) CIS patients and it was based on VEP in 219/241 (90.9%) patients, ON MRI in 3/241 (1.2%) patients and both VEP and ON MRI in 19/241 (7.9%) patients.
- MRI analysis. The following items were evaluated: total number of white matter (WM) lesions, number of PV, JC, posterior fossa (PF) and SC lesions. The combination of cortical (CL) and JC lesions was quantified by combining lesion counts obtained from DIR (when available) and T2/FLAIR sequences. Gadolinium (Gd)-enhancing lesions were identified on post-contrast T1weighted scans. To evaluate the effects of symptomatic lesions, if a subject had a brainstem or SC syndrome, we counted lesions both including and excluding those lesions present in the symptomatic regions. From the FU MRI scans, the numbers of new T2hyperintense and Gd-enhancing lesions were quantified.

• **<u>DIS and DIT criteria</u>**. On baseline MRI scans, the following DIS criteria were assessed (**Table 1**): 1) revised McDonald 2010 criteria [3]; 2) MAGNIMS 2016 criteria [5]; 3) modified DIS criteria 1 (symptomatic): revised McDonald 2010 criteria modified to include lesions in symptomatic regions (brainstem and SC) in the lesion count; 4) modified DIS criteria 2 (3PV): revised McDonald 2010 criteria modified to change to 3 the minimum number of lesions necessary to define PV involvement; 5) modified DIS criteria 3 (CL/JC): revised McDonald 2010 criteria modified to combine CL and JC; 6) modified DIS criteria 4 (ON): revised McDonald 2010 criteria modified to include ON involvement as an additional location for the definition of DIS (defined by the presence of a lesion on MRI and/or VEP abnormalities).

On baseline and FU MRI, DIT was defined according to the 1) revised McDonald 2010 criteria [3] and 2) MAGNIMS 2016 criteria [5].

The fulfilment of DIS plus DIT criteria for all DIS criteria was also assessed.

DIS criteria								
Revised McDonald	\geq 1 PV lesion	\geq 1 JC lesion	$\geq 1 \text{ PF}$	\geq 1 PF lesion				
2010 [5]	All lesions in symptomatic regions excluded in brainstem and SC syndromes							
	\geq 2 of the following:							
MAGNIMS 2016 [5]	\geq 3 PV lesions	\geq 1 CL/JC lesion	\geq 1 PF lesion	\geq 1 SC lesion	\geq 1 ON lesion			
	All lesions in symptomatic regions included in brainstem and SC syndromes							
DIT criteria								
Revised McDonald Simultaneous presence of asymptomatic Gd-enhancing and non-enhancing lesions at any time								
2010[3]	A new T2 and/or Gd-enhancing lesion on FU MRI irrespective of timing of baseline scan							
	Simultaneous presence of Gd-enhancing and non-enhancing lesions at any time (including symptomatic lesions)							
WIAGINIWIS 2010[5]	or A new T2 and/or Gd-enhancing lesion on FU MRI irrespective of timing of baseline scan							

Table 4 shows the performance of the different modified MRI criteria.

Criteria	Timepoint	Sensitivity (95% CI)	Specificity (95% CI)	AUC (95% CI)	PPV (95% CI)	NPV (95% CI)			
	DIS only								
Modified DIS criteria 1	M36	0.92 (0.87-0.96)	0.31 (0.23-0.40)	0.62 (0.57-0.66)	0.56 (0.49-0.62)	0.80 (0.69-0.89)			
(symptomatic)	M60	0.88 (0.81-0.92)	0.33 (0.22-0.46)	0.60 (0.54-0.67)	0.65 (0.58-0.72)	0.65 (0.49-0.79)			
Modified DIS criteria 2	M36	0.85 (0.78-0.90)	0.40 (0.32-0.50)	0.63 (0.57-0.68)	0.57 (0.51-0.64)	0.74 (0.63-0.82)			
(3PV)	M60	0.82 (0.75-0.87)	0.41 (0.29-0.55)	0.62 (0.55-0.69)	0.66 (0.59-0.74)	0.61 (0.48-0.73)			
Modified DIS criteria 3	M36	0.92 (0.87-0.95)	0.32 (0.24-0.41)	0.62 (0.57-0.67)	0.56 (0.50-0.62)	0.81 (0.69-0.89)			
(CL/JC)	M60	0.88 (0.81-0.92)	0.31 (0.20-0.44)	0.59 (0.53-0.66)	0.64 (0.57-0.71)	0.64 (0.47-0.77)			
Modified DIS criteria 4	M36	0.92 (0.87-0.96)	0.26 (0.18-0.34)	0.59 (0.55-0.64)	0.54 (0.48-0.60)	0.78 (0.64-0.88)			
(ON)	M60	0.90 (0.84-0.94)	0.26 (0.16-0.38)	0.58 (0.52-0.65)	0.63 (0.56-0.70)	0.64 (0.46-0.79)			
		DIS	plus DIT						
Modified DIS criteria 1	M36	0.76 (0.69-0.83)	0.49 (0.40-0.58)	0.62 (0.57-0.68)	0.58 (0.51-0.65)	0.68 (0.60-0.77)			
(symptomatic)	M60	0.74 (0.66-0.80)	0.50 (0.36-0.62)	0.62 (0.55-0.69)	0.68 (0.59-0.75)	0.57 (0.46-0.68)			
Modified DIS criteria 2 (3PV)	M36	0.70 (0.63-0.77)	0.55 (0.46-0.63)	0.62 (0.56-0.68)	0.59 (0.51-0.67)	0.66 (0.57-0.74)			
	M60	0.69 (0.61-0.76)	0.55 (0.42-0.68)	0.62 (0.54-0.69)	0.69 (0.60-0.77)	0.56 (0.45-0.66)			
Modified DIS criteria 3 (CL/JC)	M36	0.75 (0.67-0.81)	0.50 (0.42-0.60)	0.63 (0.57-0.68)	0.59 (0.51-0.66)	0.68 (0.59-0.76)			
	M60	0.73 (0.65-0.79)	0.52 (0.39-0.64)	0.62 (0.55-0.69)	0.68 (0.59-0.76)	0.57 (0.45-0.67)			
Modified DIS criteria 4	M36	0.75 (0.67-0.81)	0.48 (0.39-0.57)	0.61 (0.56-0.67)	0.57 (0.50-0.65)	0.67 (0.57-0.75)			
(ON)	M60	0.74 (0.66-0.80)	0.50 (0.36-0.62)	0.62 (0.54-0.69)	0.68 (0.60-0.75)	0.57 (0.46-0.68)			

<u>aHRs using CDMS as the outcome</u>. Table 5 shows the aHRs and their corresponding 95% CIs obtained from extended Cox regression models using CDMS as the outcome.

<u>Cumulative risk of CDMS development up to the last available FU</u>. Figure 3 shows Kaplan-Meier curves representing the survival probability estimates of not developing CDMS up to 10 years from disease onset considering DIS only or DIS plus DIT according to the revised McDonald 2010 [3] and MAGNIMS 2016 [5] criteria

96 108 120

Statistical analysis.

- <u>Outcome</u>. Development of CDMS (occurrence of a second clinical event). Time to CDMS was calculated as the interval between the onset of the first and second events.
- <u>Performance of the MRI criteria for DIS, DIT and DIS plus DIT</u>. Cumulative/dynamic time-dependent ROC curve analysis [8] for censored survival data using the clinical status (CDMS or CIS) over time as the outcome. Sensitivity, specificity, accuracy, positive and negative predictive values at months 36 (M36) and 60 (M60) were calculated. Bias-corrected and accelerated bootstrap method [9] was used to estimate 95% CIs.
- <u>Cumulative risk of CDMS development up to the last available FU</u>. Kaplan-Meier survival curves (patients censored according to their FU).
- Adjusted hazard ratios (aHRs) to CDMS conversion. Extended Cox regression models using time to CDMS as the outcome and adjusted for age, sex, treatment (time-dependent), disease onset type (optic neuritis vs others), and presence of oligoclonal bands. A gamma-frailty term was also included to address centre effects [10].

RESULTS

Table 2 summarizes the main baseline demographic, clinical and MRI findings of the CIS patients included.

	All cases (n=368)			
Demographic details	MRI details			
Number (%) of		Median time to baseline MRI (range)		18(0020)
•Men	126 (34.2%)	[months]	[months]	
•Women	242 (65.8%)	Baseline number (%) of patients with		222 (00 5%)
Median age at onset (range) [years]	32.5 (16-59)	lesions (brain	333 (90.3%)	
Clinical details	Median lesion	11 (0-248)		
Median DD at baseline MRI (range) [months]	1.8 (0.0-3.0)	Median time to	6.4 (3.0-12.0)	
Median EDSS at baseline (range)	1.5 (0.0-5.0)			
Clinical presenting symptom(s) (%):			\geq 1 PV lesion	292 (79.3%)
Monofocal	340 (92.4%)		\geq 3 PV lesions	231 (62.8%)
•Optic neuritis	•169/340 (49.7%)	Baseline	\geq 1 JC lesion	259 (70.4%)
 Brainstem/cerebellar syndrome 	•61/340 (18.0%)	number (%)	$\geq 1 \text{ CL/JC}$	266 (72.3%)
•Spinal cord syndrome	•79/340 (23.2%)	of patients	\geq 1 PF lesion	165 (44.8%)
Hemispheric syndrome	•31/340 (9.1%)	with	\geq 1 SC lesion	173 (47.0%)
Multifocal	28 (7.6%)		symptomatic lesions*	128 (34.8%)

				DIS only		DIS plus DIT		
Criteria	aHR* (95% CI)	p value	1.0	Revised McDonald 2010 - Nr	o 1.0	Revised McDonald 2010 - No		
DIS only				MAGNIMS 2016 - No		MAGNIMS 2016 - No		
Revised McDonald 2010 [3]	3.48 (2.16-5.62)	< 0.0001	_ <u>च</u> ^{0.8} - 📜	MAGNIMS 2016 - Yes	् ए ^{0.8}	MAGINIMIS 2016 - Yes		
MAGNIMS 2016 [5]	4.43 (2.59-7.56)	< 0.0001			= 2			
Modified DIS criteria 1 (symptomatic)	3.59 (2.18-5.93)	< 0.0001			B 0.6 -			
Modified DIS criteria 2 (3PV)	3.13 (2.06-4.76)	< 0.0001		The second s	tre			
Modified DIS criteria 3 (CL/JC)	3.66 (2.24-6.00)	< 0.0001	8 0.4 8	A REAL PROPERTY AND A REAL	WC 0.4	Contraction of the local division of the loc		
Modified DIS criteria 4 (ON)	3.34 (1.98-5.64)	< 0.0001	U 0.2	······································	් ට _{0.2} _	[™]		
DIS plus DIT								
Revised McDonald 2010 [3]	2.52 (1.78-3.58)	< 0.0001	0.0 -		0.0 -			
MAGNIMS 2016 [5]	2.95 (2.04-4.26)	< 0.0001	0 12 24 3	6 48 60 72 84 96 108	120 0 12	24 36 48 60 72 84 96 108		
Modified DIS criteria 1 (symptomatic)	2.54 (1.77-3.65)	< 0.0001	Numl	Months ber at risk (number censored)		Months Number at risk (number censored)		
Modified DIS criteria 2 (3PV)	2.54 (1.80-3.58)	< 0.0001	$\frac{0}{07}$ $\frac{12}{78}$ $\frac{24}{55}$ $\frac{3}{4}$	Months 6 48 60 72 84 96 108	120 0 12 150 120	Months 24 36 48 60 72 84 96 108 82 (1 48 20 17 14 12 11		
Modified DIS criteria 3 (CL/JC)	2.60 (1.83-3.71)	< 0.0001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 159 120 (68) (0) (18) 7 209 118	85 61 48 50 17 14 12 11 (40) (57) (67) (81) (93) (96) (98) (98) 85 60 42 28 18 11 8 5		
Modified DIS criteria 4 (ON)	2.58 (1.81-3.67)	< 0.0001	(0) (19) (31) (4 84 68 52 3	7) (62) (76) (89) (95) (97) (98) .9 .30 .20 .13 .11 .9 .8	(99) (0) (13) 8 149 114 (0) (13)	(19) (32) (43) (52) (61) (65) (67) (68) 82 61 48 30 17 14 12 10 (22) (23) (23) (23) (23) (26) (26)		
			(11) (11) (2)) (2		(60) (0) (16)	- (#/) (##) (##) (//%) (//// (//// ////////////////////		

*=adjusted for age, sex, centre, treatment, type of onset and oligoclonal bands

CONCLUSIONS

284 170 116 82 60 38 22 14 11 8

- By evaluating a large multicentre cohort of patients experiencing a typical CIS, we found that the MAGNIMS 2016 criteria are easy to implement and they perform similarly to the revised McDonald 2010 criteria considering CDMS conversion at M36 and M60, with both criteria showing high sensitivity and accuracy and similar specificity.
- Survival probability analyses confirmed that the two sets of criteria had similar performance, even though, compared to the revised McDonald 2010, the MAGNIMS 2016 DIS criteria had a higher aHR, which may be explained by the higher conversion-free survival in CIS patients not fulfilling the MAGNIMS 2016 criteria.
- The inclusion of lesions in the symptomatic region in CIS patients with a brainstem or SC onset did not affect performance of DIS and DIT diagnostic criteria, supporting the removal of this distinction, with a simplification of MRI criteria for DIS and DIT.
- The use of 3 lesions to define PV involvement reduced sensitivity (0.85 vs 0.91 at M36), but increased specificity (0.40 vs 0.33 at M36), without affecting diagnostic accuracy, suggesting that this criterion could improve the specificity of the MRI diagnostic criteria, reducing misdiagnosis and also representing a possible prognostic factor.
- The inclusion of CLs evaluation in the subgroup of CIS patients (45.4%) with DIR acquisition did not significantly influence DIS criteria performance, and only four additional patients fulfilled the DIS criteria. Our study confirmed MAGNIMS guidelines to use the combined term CL/JC to expand the concept of JC involvement.
- The inclusion of ON assessment in the definition of DIS in those patients who had VEP or optic nerve MRI evaluations slightly decreases specificity (0.26 vs 0.33 at M36), which is expected whenever additional criteria are included. Further studies aimed at validating MRI and neurophysiological measures of ON involvement as an additional DIS criterion should be undertaken.

REFERENCES

9) Efron, Journal of the American Statistical Association 1987 10) Glidden et al., Stat Med 2004