

E. Sbragia¹, G. Boffa¹, A.Tacchino², N. Piaggio¹, G. Bommarito¹, G.L. Mancardi¹, G. Brichetto², M. Inglese ^{1,3}

¹ Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genova, IRCCS AOU San Martino-IST; ² Italian Multiple Sclerosis Foundation, Scientific Research Area; Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York

BACKGROUND

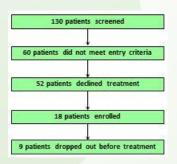
Upper limb motor dysfunction is very common in multiple sclerosis (MS), interfering with daily living activities and worsening quality of life [1]. Neuro-rehabilitation may be a particularly useful approach, since treatment options are limited. It has been previously demonstrated [2] that active task-oriented upper limb motor rehabilitation treatment in relapsing remitting (RR) MS has an impact both on motor performance and on MRI-derived metrics of white matter integrity compared to passive exercises. However, there is no evidence about the utility of this treatment in patients with progressive MS.

AIMS

The aim of our study is to evaluate the clinical response and the MRI-derived metrics to task-specific oriented rehabilitation strategy in progressive MS patients. Here we report the study design and baseline demographic, clinical and radiological characteristics of patients enrolled in the study.

MATERIALS AND METHODS

Experimental design


Inclusion criteria age: 18-65 years; b) EDSS ≤ 6.5 a)

Exclusion criteria:

- mini-mental state examination (MMSE) ≤ 26 a)
- modified Ashworth scale > 3 in at least 2 muscle groups history of cardiovascular, respiratory, orthopedic, psychiatric b
- c) conditions precluding participation
- d) MRI contraindications

Patients will receive 36 one-hour treatment sessions, three times a week for 2 months.

- Clinical and behavioral data will be recorded at baseline and will be collected after the rehabilitation treatment (T1) and at 12 month follow-up (T2).
- Distal and proximal upper limb motor performance, dexterity and perceived motor performance will be evaluated in all patients by the following standard measures:
- action research arm test (ARAT) nine Hole Peg Test (9- HPT) ABILHAND a)
- b)
- c) d) Arm function in multiple sclerosis questionnaire (AMSQ)
- At the same time points (baseline, T1 and T2), all subjects will undergo brain MRI (1.5 T GE) with the following protocol:
- axial DP-T2-4 mm; a)
- b)
- c) d)
- 3D-T1- weighted SPGR (voxel size 1 mm³) DTI with diffusion gradients applied along 61 directions T2*-weighted EPI for resting state (rs)-fMRI with closed eyes

MRI Analysis

As gold-standard, lesion masks were manually outlined on T2-DP and 3DT1-images using the software package Jim (v 7.0). Normalized brain volume (NBV), Grey (GM) and White Matter (WM) volumes were obtained with Sienax [3].

Statistical analysis

All statistical analysis were performed using SPSS (v. 21.0)

RESULTS

DEMOGRAPHIC CHARACTERISTICS	
Mean age, y	55 ± 12
F/M	8/1
Median EDSS (range)	4.5 (4-7.5)
Mean disease duration, y	22 ± 12
PPMS / SPMS	1/8
MRI CHARACTERISTICS (mean	n ± SD)
T2 lesion volume, mL	40 ± 25
T1 lesion volume, mL	29 ± 20
Normalized brain volume, mL	1189 ± 115
Normalized white matter volume, mL	566 ± 62
Normalized grey volume, mL	623 ± 73
FUNCTIONAL CHARACTERISTICS	mean ± SD)
Symbol digit modalities test (SDMT)	35 (11)
Right Nine-hole-peg-test (9-HPT)	42 (52)
Left Nine-hole-peg-test (9-HPT)	40 (29)
ABILHAND	38 (12)
AMSQ	49 (19)

- · 6 patients were assigned to the task-oriented rehabilitation treatment, 2 patients to the passive rehabilitation group and 1 patient was included in the control group
- Only 5 patients reached T1 time-point

DISCUSSION AND CONCLUSIONS

- Enrollment of Progressive MS patients showed to be extremely difficult
- · Main resons for declining the rehabilitative treatment were: problems in reaching the rehab-center; comorbidities; mistrust in motor improvement
- · Main resons for drop-out were: job committment and demanding study design
- We have addressed the enrollment issues adopting the following strategies:
 - · reducing the treatment period from 3 to 2 months
 - · offering home treatment when preferred by the patients
 - including other clinical centers in Genoa
- · The study is ongoing and, if successful, will provide relevant clinical and biological information about the impact of taskoriented rehabilitation in progressive MS

REFERENCES

[1] Spooren, A.I., A.A. Timmermans, and H.A. Seelen "Motor training programs of arm and hand in patients with MS according to different levels of the ICF: a systematic review." BMC Neurol, 2012

[2] Bonzano, L.. et al. "Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis." Neuroimage, 2013

[3] Smith, S.M. et al. "Accurate, robust and automated longitudinal and cross-sectional brain change analysis." NeuroImage, 2002