STRUCTURAL BRAIN CORRELATES OF COGNITIVE IMPAIRMENT INPN 324PROGRESSIVE SUPRANUCLEAR PALSY

F. Caso,¹ F. Agosta,¹ M.A. Volontè,² M. Copetti,⁵ P. Valsasina, ¹ A. Marcone,³ P. Tiraboschi,⁶ P.M. Ferraro,¹ M. Falautano,² A. Falini,⁴ G. Comi,² M. Filippi.^{1,2}

¹Neuroimaging Research Unit, and ²Department of Neurology, Institute of Experimental Neurology, ³Department of Clinical Neurosciences, ⁴Department of Neuroradiology, CERMAC, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; ⁵Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy; ⁶Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico ''Carlo Besta'' Milan, Italy

BACKGROUND

✓ Progressive supranuclear palsy syndrome (PSPs) commonly presents cognitive (1, 2) and behavioural disorders (3), beside classical motor symptoms.

✓ Previous voxel-based morphometry studies revealed a significant relationship between frontal grey matter (GM) atrophy and deficits in executive functions (4, 5) and social cognition (6). Moreover a recent diffusion-tensor (DT)-MRI study showed that white matter (WM) damage in corpus callosum and frontal WM tracts is significantly related to executive deficits and apathy in these patients (7).

OBJECTIVES

✓ To describe the pattern of GM and WM damage in a clinically and neuropsychologically well-characterized sample of PSPs patients using a surface-based method as cortical thickness and DT-MRI respectively.

 ✓ To explore the clinicoanatomical correlations between MRI measures and cognitive features of PSPs patients.

METHODS

Table 1. Demographic and clinical data of PSPs patients and HC.

	H	С	PS	Ps	Values are means
Number	15	5	23		standard deviations. Abbreviations :
Age [years]	69.5	6.8	69.4	7.2	*<0.05 vs healthy
Sex [F/M]	9/	6	14	/9	controls (HC); F:
Education [years]	12.1	4.9	11.4	4.9	female; M: male; MMSE: mini
Disease duration [years]	-		4.2	3.1	mental state
UPDRS III-motor score [off-status]	_		40.4	13.7	examination; UPDRS III: Unified
Hoehn and Yahr scale [off-status]	_		3.6	0.8	Parkinson's disease
MMSE (cut-off 24)	28.9	0.9	24.9	4*	Rating scale III
Clinical Dementia Rating scale	_		1.2	0.8	

Table 2. Main neuropsychological findings in PSPs patients.

Cognitive domains	Values are means	
Executive domain	-1.34 1.0 (-3.36 -0.5)	standard deviations (range).
Fluency domain	-1.44 1.1 (-2.96 -1.61)	Raw cognitive test
Verbal Memory domain	-0.79 1.1 (-2.78 -0.15)	scores were
Visuospatial Memory domain	-1.04 0.9 (-2.16 -0.62)	transformed into Z scores, and the
Visuospatial domain	-0.79 1.1 (-6.15 -0.56)	mean Z score for
Language domain	-1.24 1.9 (-5.48 -1.10)	each cognitive domain was
Behavioral disturbances		calculated.
Neuropsychiatry battery inventory	11.1 11.5	
Frontal Behavioral Inventory	17.8 12.7	

MRI acquisition and analysis

3T MRI scanner: T2-weighted spin echo (SE); fluid-attenuated inversion recovery; 3D T1-weighted fast field echo; and pulsed-gradient SE echo planar with sensitivity encoding and diffusion gradients applied in 32 non-collinear directions.

✓ A surface-based morphometry analysis was used to assess cortical thickness. Both cluster-wise and regions of interest-based analyses were applied.

 \checkmark WM damage [fractional anisotropy (FA), and mean (MD), axial (axD), and radial diffusivities (radD)] was measured using a voxel-wise analysis with Tract-Based Spatial Statistics (TBSS) version 1.2 in FSL (p<0.05 FWE).

✓ A Random Forest (RF) approach was used to identify MRI predictors of cognitive impairment in PSPs at an individual patient level.

RESULTS

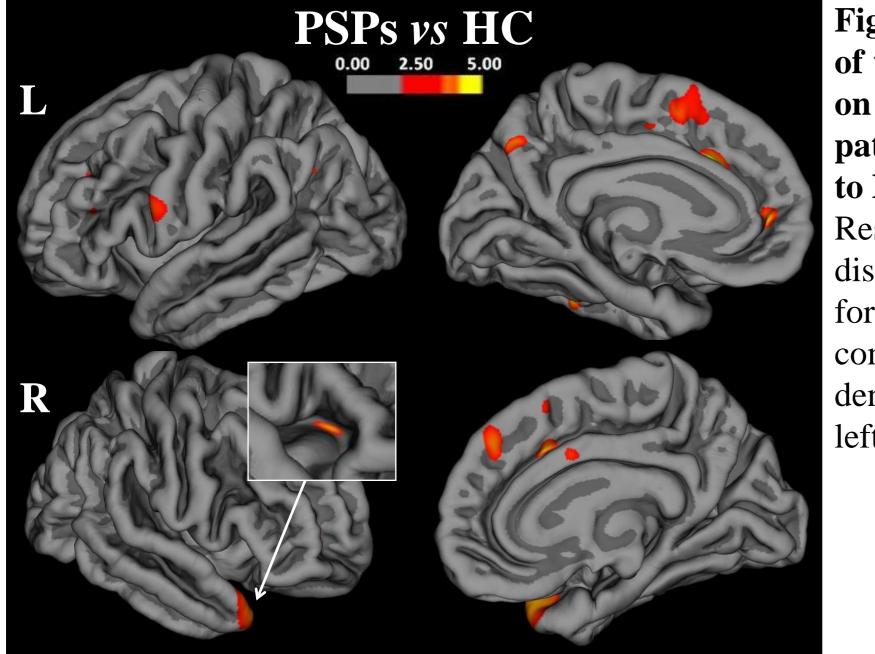
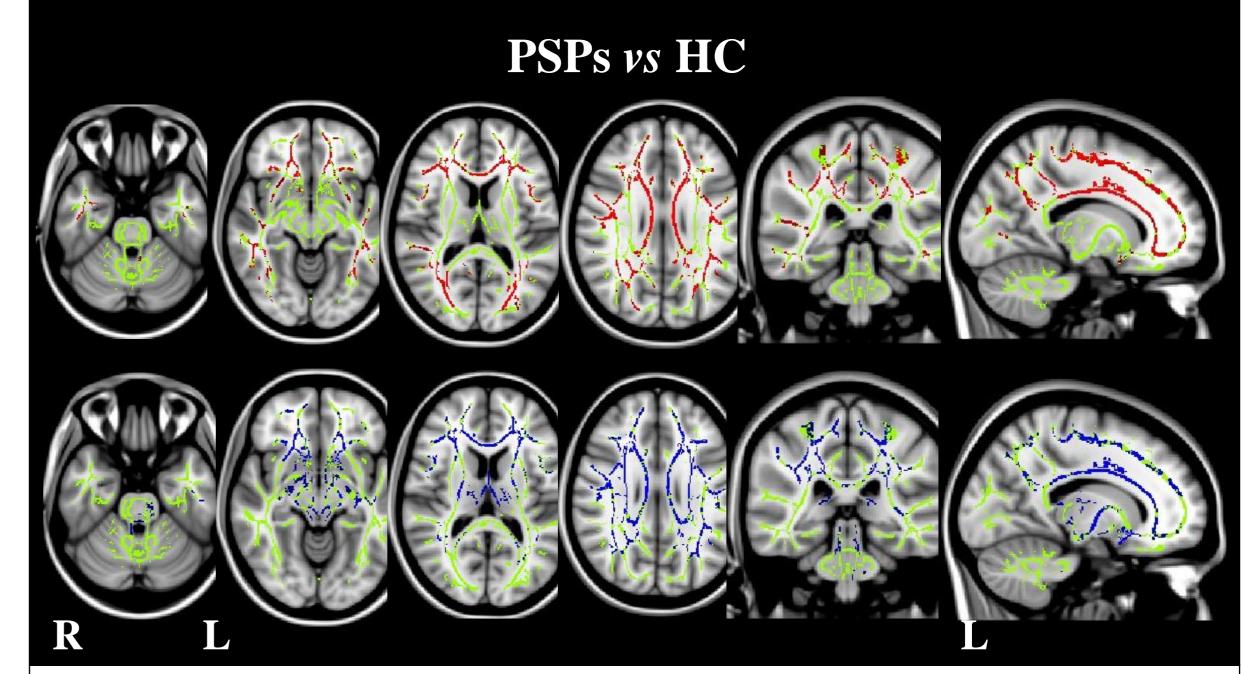



Figure 1. Distributionof the cortical thinningon the pial surface inpatients PSPs relativeto HC.Results are false-discovery rate correctedfor multiplecomparisons. Color bar

denotes t values. L= left; R= right.

RANDOM FOREST ANALYSIS						
EXECUTIVE DOMAIN	NVI	I VERBAL MEMORY DOMAIN I				
Left external capsule FA	100.00	Body of corpus callosum MD	100.00			
Body of corpus callosum MD	89.45	Pontine crossing tracts MD	95.13			
Left external capsule raD	65.28	Left cingulum raD	76.78			
FLUENCY DOMAIN	NVI	VISUOSPATIAL MEMORY				
Left external capsule FA	100.00	DOMAIN	NVI			
Pontine crossing tracts MD	85.39	Right external capsule raD	100.00			
Left external capsule raD	38.97	Left external capsule raD	66.92			
-		Left external capsule MD	64.48			
LANGUAGE DOMAIN	NVI	Abbreviations: axD: axial diff	usivity;			
Left external capsule FA	100.00					
Left corticospinal tract raD	88.33					
Body of corpus callosum raD	82.96	importance; radD: radial diffusivity				

REFERENCES

Gerstenecker A et al. Arch Clin Neuropsychol 2013;28:104-113; 2. Grafman J et al. Brain Cogn 1995;28:311 320; 3. Bak TH et al. J Neurol Neurosurg Psychiatry 2010;81:1057-1059; 4. Cordato NJ et al. Brain

Figure 2. TBSS results in patients with PSPs relative to HC. Top: decreased fractional anisotropy (FA) in PSPs patients *vs* HC is shown in red. Bottom: increased mean diffusivity (MD) in PSPs patients *vs* HC is shown in blue. Results are overlaid on the sagittal, coronal and axial sections of the Montreal Neurological Institute standard brain in radiological convention (right is left), and displayed at p<0.05 FWE. The white matter skeleton is shown in green. L= left; R= right.

CONCLUSIONS

✓ PSPs patients showed a focal cortical thinning within dorsolateral anterior regions, while WM degeneration was more severe and distributed involving the main motor and extramotor tracts.

✓ WM measures were highly associated with neuropsychological features in patients with PSPs.

 \checkmark DT MRI might be a useful tool to explore the impact of WM domagn in the genesis and progression of PSPs and the

2012;135:2089-2102; 7. Agosta F et al. J Neurol 2014;261:913-924.

cognitive deficits in this disease.