

The analysis of optic pathway does not disclose correlations between white matter damage and neurodegeneration in very early multiple sclerosis Lisa Federle¹; Marco Puthenparampil¹; Laura Cacciaguerra,¹; Davide Poggiali¹; Silvia Miante¹; Mario Ermani²; Elisabetta Pilotto³; Francesca Rinaldi¹; Paola Perini¹; Edoardo Midena³; Paolo Gallo¹.

1: Multiple Sclerosis Centre of Padova, Department of Neuroscience, University Hospital of Padova

2: Department of Neurosciences DNS, University Hospital of Padova

3: Ophthalmology Unit, University Hospital of Padova

Introduction. The optic pathway was suggested to be a prototype system to investigate trans-synaptic degeneration in multiple sclerosis (MS).

Objective. To investigate possible relationships between white matter (WM), cortical and retinal damage in a very early phase of MS

Materials an Methods.

Study population: 43 patients with clinically isolated syndrome or very early relapsing remitting MS (CIS/eRRMS; mean disease duration 3.4±3.0 mths) and 31 matched HC were studied. Patients were divided into optic neuritis positive (ON+, n.10) or ON- (n.33) on the base of clinical presentation (Table 1). MRI protocol: MRI examination included 3D-T1 and 3D-FLAIR) sequences. Global cortical thickness (gCTh), pericalcarin CTh (V1-CTh) and white matter volume (WMV) were analysed by means of Freesurfer on 3D-T1 scans. Optic radiation morphology (OR) and volume (ORV) were reconstructed on the base of the Jülich's Atlas (Figure 1). White matter lesion volume (WMLV),

		<u> </u>				
	Patients				Controls	
	Overall	ON+	р	ON-	hC-OCT	hC-MRI
number	43	10	-	33	31	28
age (years) mean ± dev.st (range)	35.0 ± 10.3 (18-59)	34,3 ± 10,7 (22-56)	0.8	35.2 ± 10.4 (18-59)	35.4 ± 9.1 (25-59)	36.1 ± 14.1 (66-14)
female/male ratio	1.65	1.67	1.0	1.65	1,4	3,7
disease duration (months) mean ± dev.st (range)	3.4 ± 3.0 (0-10)	4.5 ± 4.1 (0-10)	0.2	3.1 ± 2.6 (0-9)	n.a.	n.a.
EDSS median (range)	2.0 (1.0 ± 4.0)	2.0 (1.0 ± 4.0)	0.5	2.0 (1.0 ± 3,5)	n.a.	n.a.
delay onset-MRI (months)	3.4 ± 3.0 (0-10)	4.5 ± 4.1 (0-10)	0.2	3.1 ± 2.6 (0-9)	n.a.	n.a.
delay OCT-MRI (months) mean ± dev.st (range)	1.1 ± 1.7 (0-8)	1.6 ± 1.2 (0-3)	0.3	$1,0 \pm 1,8$ (0-8)	n.a.	n.a.

OR-WMLV and percent WM damage (WMLV/WMV=WMLV% and OR-WMLV/ORV=ORWMLV%) were obtained by 3D-FLAIR image segmentation. OCT protocol: optic coherence tomography (OCT) included the analysis of macular volume (MV), global peripapillary retinal nerve fiber layer (g-RNFL) and the 6 *fundus oculi*'s sectors

(temporal, T-RNFL; temporal superior, TS-RNFL; nasal superior, NS-RNFL; nasal, N-RNFL; nasal inferior, NI-RNFL, temporal inferior, TI-RNFL). The retina of both eyes was analyzed. The eyes of ON+ were further divided into affected (aON+) or not (naON+).

Results.

MRI data. ON+ had an higher WMLV, OR-WMLV, WMLV% and OR-WMLV% than ON- (Figure 2), while gCTh, pericalcarin CTh and the ratio between WMLV% and ORWMLV% did not differ between the two groups. gCTh No correlation between or pericalcarin CTh and OR-WMLV or OR-WML% was observed in both groups.

Table 1. *Demographic and clinical features of the patients included in the study.*

Figure 1. T1-3D (Figure a, b, c) images were recorded by the software fsl within the space NMI in order to reconstruct three-dimensionally the optical radiation applying the Jülich probabilistic atlas (threshold: 0.20, *Figure d, e, f). The volume of interest* (VOI) corresponding to the areas of white matter demyelination were selected through the program mricron by a team of neurologists using MRI 3D-FLAIR sequences (Figure g, h, i). These volumes were calculated by counting the voxels in each VOI and have been converted to mm^3 , defining the total WMLV. Finally, ORWMLV (Figure j, k, l, o)

OCT data. Compared to HC and ON- eyes, aON+ presented a significant thinning of T-RNFL (p<0.0001) and TI-RNFL (p<0.0001) (Figure 3). The multivariate analysis failed to disclose any correlation between OCT data and MRI WM and cortex parameters.

ON-ON+ ON-ON+ ON-ON+ Figure 2. White Matter MRI parameters in ON+ and ON-. ON+ presented significantly higher ORWMLV and ORWMLV% and an increased WMLV and WMLV% compared to ON-. The ratio did not differ between the two groups.

3,00%

2,00%

1,00%

0,00%

Conclusions. No relationship between WM, cortical and retinal damage in both ON+ and ON- CIS/eRRMS patients could be demonstrated. In CIS/eRRMS ON+ patients lesions in both optic nerve and WMOR were not associated to a

2,00%

1,00%

0,00%

