Long non coding RNA (LncRNAs) expression analysis in patients with Multiple Sclerosis: potential biomarkers of disease susceptibility and progression

C Fenoglio ${ }^{1}$, M Serpente ${ }^{1}$, R Ardizzoia ${ }^{1}$, M De Riz ${ }^{1}$, C. Comi ${ }^{2}$, AM Pietroboni¹, A. Calvi¹, SMG Cioffi ${ }^{1}$, M Arcaro $^{\mathbf{1}}$, E Oldoni ${ }^{1}$, R Cantello ${ }^{\mathbf{2}}$, D Galimberti', E Scarpini ${ }^{\mathbf{1}}$
${ }^{1}$ Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
${ }^{2}$ Dept. Of Translational Medicine, Section of Neurology, University of Eastern Piedmont Amedeo Avogadro, Novara, Italy

BACKGROUND

(e) Long non coding RNAs (IncRNAs) represent a novel class of transcripts that are >200 nucleotides in length and do not have the potential to encode for proteins exceeding lenghts of 30 amino acids.
© They are involved in neurological disorders (Fenoglio et al., IJMS 2013)
(C) they exert a role in:
regulation of gene expression : signaling, molecular decoys, mRNA stability

AIM

To investigate the role of cellular LncRNA in Multiple Sclerosis pathogenesis by investigating their expression in patients compared with controls

RT PCR with human LncProfiler qPCR Array from SBI, that analyzed the expression of the 90 IncRNAs most investigated and related to a disease status

RESULTSF DISCOVERY PHASE:

* Results showed robust dysegulation of 14 IncRNAs in MS patients compared with controls
* Some of these dysregulation showed opposite trend in Progressive MS and RRMS

VALIDATION PHASE

(e ANRIL, sox2-ot, TUG-1 and XIST were downregulated also in RR MS
© GOMAFU, HULC and BACE-1AS were dowregulated both RR and Progressive MS © ANRIL and TUG1 correlate with EDSS whereas NRON correlates with disease duration CONCLUSION
(e) LncRNAs investigated were found to be significantly downregulated in patients compared with controls.
© NRON is involved in inflammatory process (Nguyen et al., Int J. Devl. Neursci,2008) whereas TUG1, MALAT-1, Sox2-OT and GOMAFU are involved in brair development (Wu et al., Brain Research Bullettin 2013) and oligodendrocyte differentiation (Mercer et al., BMC Neuroscience 2010) and they could thus exert a role in MS pathogenesis.

