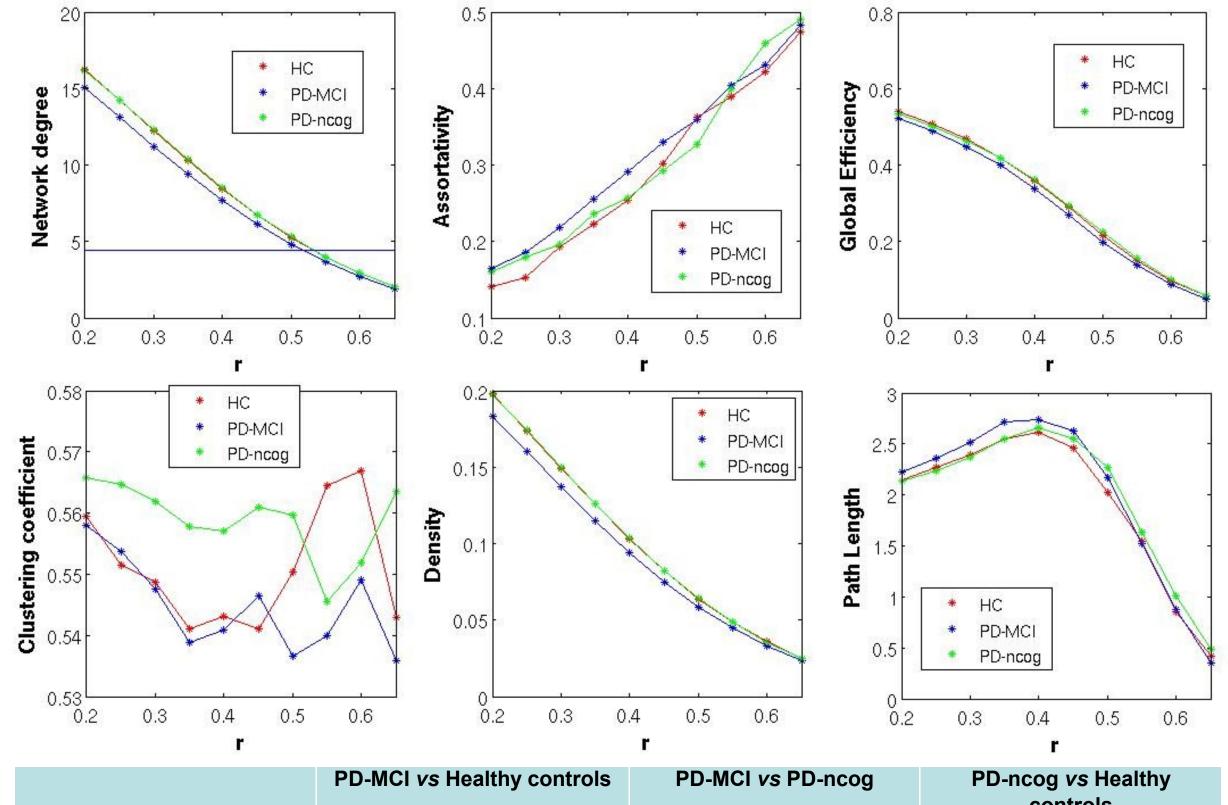
Functional connectome organization is altered in PD patients with mild cognitive impairment

Federica Agosta,¹ Sebastiano Galantucci,¹ Iva Stanković,³ Silvia Basaia,¹ Tanja Stojković,³ Elka Stefanova,³ Elisa Canu,¹ Alessandro Meani,¹ Delia Gagliardi,¹ Vladimir S. Kostic,³ Massimo Filippi.^{1,2}

¹Neuroimaging Research Unit, and ²Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; ³Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

INTRODUCTION AND OBJECTIVE

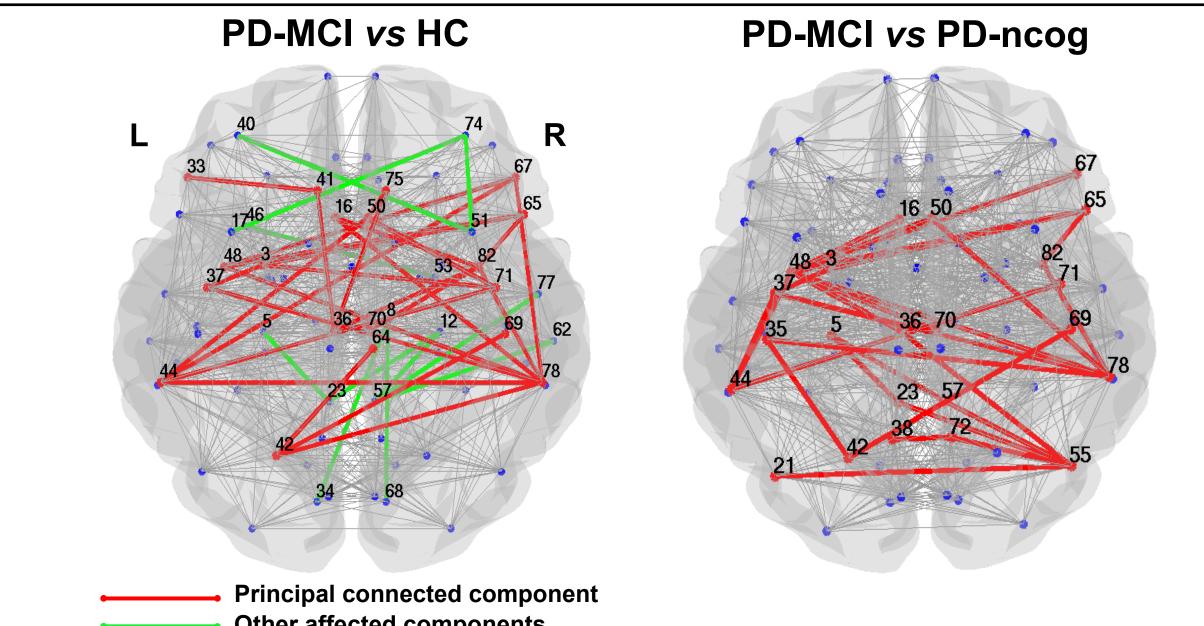

Investigation of the brain wiring architecture is a powerful approach in the examination of the pathogenic mechanisms of neurodegenerative disease. This study investigated the functional brain connectome organization in patients with Parkinson's disease (PD) with mild cognitive impairment (MCI).

MATERIALS AND METHODS

- 54 PD-MCI patients, 54 demographically matched PD patients with no cognitive impairment (PD-ncog), and 41 healthy controls (HC) underwent a resting state functional MRI (fMRI) using a 1.5 T MR scanner.
- All patients and controls underwent a comprehensive clinical and neuropsychological evaluation including tests that assess different cognitive domains: attention and working memory, executive functions, memory, language, and visuospatial functions. According to the MDS Task-force criteria (Litvan, et al., 2012), PD-MCI patients had multi-domain MCI with 24% having impairment of attention and working memory, 74% of executive functions, 64% of memory, 74% of language and 80% of visual spatial abilities.

Figure 2. Graph analysis: the analysis of the global graph theoretical measures showed that PD-MCI had significantly lower mean network degree, connections density, and global efficiency as well as higher path length when compared to HC and PD-ncog. No significant differences in clustering coefficient and assortativity were found. Exact p-values are reported in the table at the bottom.

RESULTS

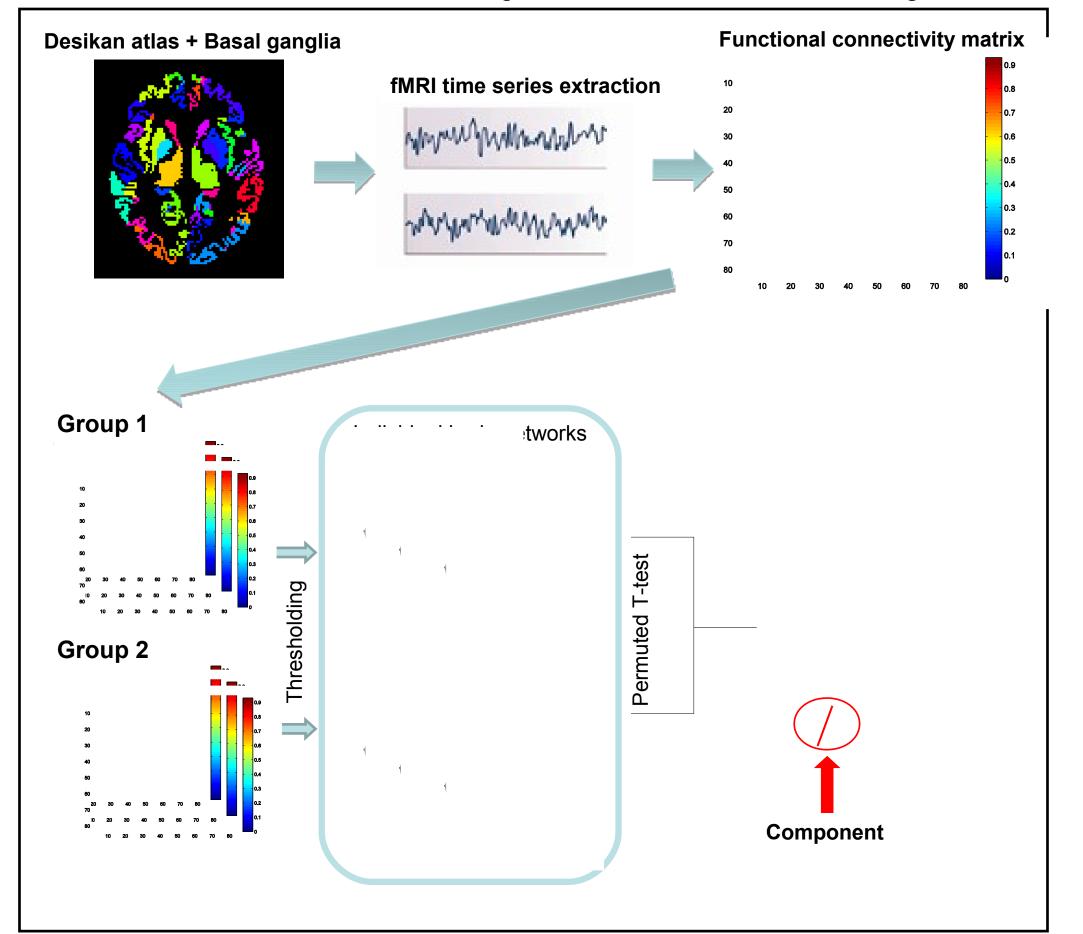

- Graph theory analysis was used to measure the global topological properties of functional brain networks in patients and controls.
- Differences in regional functional networks among groups were investigated using Networkbased statistic (NBS).
 - **Table 1**. Demographic and clinical findings of PD patients and healthy controls.

	Healthy controls	PD-MCI	PD-ncog	PD-MCI <i>vs</i> controls	PD-ncog <i>vs</i> controls	PD-MCI <i>vs</i> PD-ncog
Number	41	54	54	-	-	-
Right-handed	41	52	51	0.46	0.13	0.37
Men/women	15/26	29/25	29/25	0.1	0.1	1
Age at MRI, ys	63 ± 8 (49-77)	64 ± 9 (39-81)	63 ± 7 (47-83)	0.48	0.94	0.39
Education, ys	13.5 ± 2.9 (8- 18)	10.9 ± 2.4 (8-16)	11.8 ± 2.2 (8-17)	<0.001	0.001	0.15
Age at onset, ys	-	58.2 ± 9.3 (38-76)	58.7 ± 8.0 (44-74)	-	-	0.89
Disease duration, ys	-	6.2 ± 4.9 (1-22)	4.6 ± 4.4 (1-19)	-	-	0.06
UPDRS III	-	37.2 ± 16.3 (12-76)	26.3 ± 14 (7-61)	-	-	<0.001
UPDRS total	-	55.8 ± 21.9 (16-102)	39.1 ± 18.4 (11-86)	-	-	<0.001
H&Y	-	2.1 ± 0.9 (1-4)	1.6 ± 0.8 (1-3)	-	-	0.01
Motor phenotype, tremor dominant/rigid akinetic	-	23/29	22/30	-	-	0.98
Asymmetry, asymmetric/ symmetric	-	52/2	51/3	-	-	0.65
Side of onset, right/left/ symmetric	-	31/21/1	35/17/2	-	-	0.61
LEDD	-	690.5 ± 433.8 (0- 1560)	447.4 ± 356.4 (0- 1200)	-	-	0.004

Numbers are mean ± standard deviation (range) or number. P values refer to ANOVA models, followed by post-hoc pairwise comparisons. Abbreviations: H&Y: Hoehn & Yahr scale; LEDD: Levodopa Equivalent Daily Dose; PD-MCI: PD patients with mild cognitive impairment; PD-ncog: PD patients with no cognitive impairment; UPDRS: Unified Parkinson's Disease Rating

	PD-MCI vs Healthy controls	PD-MCI <i>vs</i> PD-ncog	PD-ncog <i>vs</i> Healthy controls
Network degree	P=0.04 at r=0.2	p=0.03 at r=0.2	NS
Assortativity	NS	NS	NS
Global efficiency	p=0.02 at r=0.2	p=0.05 at r=0.2	NS
Clustering coefficient	NS	NS	NS
Density	p=0.04 at r=0.2	p=0.03 at r=0.2	NS
Path length	p=0.01 at r=0.2 p=0.05 at r =0.4	p=0.004 at r=0.2 p=0.05 at r =0.4	NS

Figure 3. NBS: networks showing reduced functional connectivity in PD-MCI *vs* HC (p=0.015) and in PD-MCI *vs* PD-ncog (p=0.007). There were no significant functional connectivity changes when comparing PD-ncog to HC. Connections belonging to the principal connected component are shown in red, while the connections belonging to minor components are shown in green. The table at the bottom of the figure reports the nodes of the network with the corresponding number.




Scale; ys: years.

Resting-state fMRI processing

P.318

- Pre-processing (realignment, normalization, linear detrend, band-pass filtering 0.01-0.08 Hz).
- Extraction of average fMRI time series from the 68 cortical regions of the Desikan atlas plus the basal ganglia.
- Assessment of bivariate Pearsons' correlation coefficients between each pair of time series, which results in a connectivity matrix for each study subject.
- Calculation of graph theoretical measures using brain connectivity toolbox.
- Computation of between group comparisons and different component extraction using NBS.

	Other af	fected components				
-Thalamus	22	L-inferior temporal	43	L-superior temporal	64	R-paracentral
L-Caudate	23	L-isthmus cingulate	44	L-supramarginal	65	R-pars opercularis
L-Putamen	24	L-lateral occipital	45	L-frontal pole	66	R-pars orbitalis
L-Pallidum	25	L-lateral orbitofrontal	46	L-temporal pole	67	R-pars triangularis
Hippocampus	26	L-lingual	47	L-transverse temporal	68	R-pericalcarine
-Amygdala	27	L-medial orbitofrontal	48	L-insula	69	R-postcentral
Accumbens	28	L-middle temporal	49	R-bankssts	70	R-posterior cingulate
R-Thalamus	29	L-parahippocampal	50	R-caudal anterior cingulate	71	R-precentral
R-Caudate	30	L-paracentral	51	R-caudal middle frontal	72	R-precuneus
R-Putamen	31	L-pars opercularis	52	R-cuneus	73	R-rostral anterior cingulate
R-Pallidum	32	L-pars orbitalis	53	R-entorhinal	74	R-rostral middle frontal
Hippocampus	33	L-pars triangularis	54	R-fusiform	75	R-superior frontal
-Amygdala	34	L-pericalcarine	55	R-inferior parietal	76	R-superior parietal
-Accumbens	35	L-postcentral	56	R-inferior temporal	77	R-superior temporal
L-bankssts	36	L-posterior cingulate	57	R-isthmus cingulate	78	R-supramarginal
l anterior cingul	ate 37	L-precentral	58	R-lateral occipital	79	R-frontal pole
al middle fronta	al 38	L-precuneus	59	R-lateral orbitofrontal	80	R-temporal pole
L-cuneus	39	L-rostral anterior cingulate	60	R-lingual	81	R-transverse temporal
-entorhinal	40	L-rostral middle frontal	61	R-medial orbitofrontal	82	R-insula

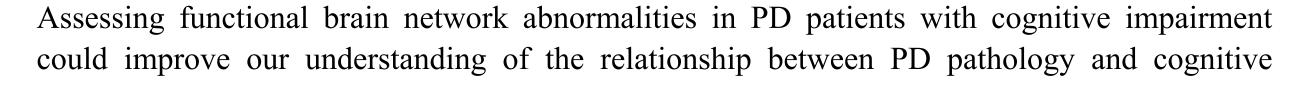
R-middle temporal

R-parahippocampal

83

Brainstem

CONCLUSIONS


L-superior frontal

L-superior parietal

62

63

- The topological properties of brain networks are altered in PD patients with cognitive deficits, suggesting a loss of efficiency of long-distance functional connections.
- The pattern of the alterations of the functional connectome and their anatomical distribution suggest that they might reflect the neuropathological substrate underlying PD-related cognitive impairment.

10

11

15

17

18

19

20

21

R-H

R-4

L-fusiform

L-inferior parietal

41

42

L**-caudal**

L-cauda

