

# FDG-PET as a predictive biomarker of conversion to dementia in Mild Cognitive Impairment (MCI) patients: a retrospective consecutive case series study

Ernesto Migliorino <sup>1</sup>, Simona Gardini <sup>1</sup>, Marco Spallazzi <sup>2</sup>, Federica Barocco <sup>2</sup>, Caterina Ghetti <sup>3</sup>, Livia Ruffini <sup>4</sup>, Maura Scarlattei <sup>4</sup>, Paolo Caffarra <sup>1,5</sup>

<sup>1</sup> Department of Neuroscience, University of Parma, Parma, Italy
<sup>2</sup> Department of Emergency-Urgency and General and Specialist Medical Area, Azienda Ospedaliero-Universitaria, Parma, Italy
<sup>3</sup> Medical Physic Department, Azienda Ospedaliero-Universitaria, Parma, Italy
<sup>4</sup> Nuclear Medicine Department, Azienda Ospedaliero-Universitaria, Parma, Italy
<sup>5</sup> Centre of Cognitive Disorders, AUSL, Parma, Italy

ernestomigliorino@hotmail.com

#### INTRODUCTION

The alteration of cerebral metabolism represents one of the earlier biomarkers of dementia and FDG-PET is a valid and essential diagnostic tool to identify specific neurometabolic patterns in dementia variants.

### **OBJECTIVES**

>To ascertain the existence of neurometabolic predictors of evolution to different forms of dementia in a cohort of MCI patients.

#### **MATERIALS AND METHODS**

#### **Participants**

A pool of 195 subjects [106 females, 89 males; mean age 67.52 (SD 11.4); mean education 9.11 (SD 4.32)] who underwent FDG-PET between September 2009 and December 2014 and followed at Centre of Cognitive Disorders, AUSL, of Parma, Italy.

▶74 patients [38 females, 36 males; mean age 68.05 (SD 9.94); mean education 9.2 (SD 4.18)] who respected the diagnostic criteria for MCI at the moment of the FDG-PET (figure 1) were enrolled into the study and underwent clinical and neuropsychological follow-up for about two years (figure 2): 28 remained stable MCI, 33 evolved to Alzheimer's type Dementia (AD), 13 evolved to Frontotemporal Dementia (FTD).

#### **Procedure**

FDG-PET scans at the baseline were compared between patients who developed AD (MCI-AD) or FTD (MCI-FTD), and those who remained Stable MCI, using Statistical Parametric Mapping software (SPM5).

➤ Moreover, brain metabolism of MCI-AD patients and MCI-FTD patients was compared with that of a sample of healthy controls.

The analysis focused on find out both areas of decreased metabolism indicating synaptic dysfunction and increased metabolism suggestive of compensatory mechanisms.

# **RESULTS**

MCI-AD patients presented at baseline a hypometabolism in the left middle and inferior temporal gyri (BA 21, 39, 20; figure 3) and an increased metabolism in the bilateral postcentral gyri, in the right precentral gyrus, insula (BA 43, 6, 13) and in the left lentiform nuclei (putamen; figure 4), compared with stable MCI.

➤ MCI-FTD presented at baseline a hypometabolism in the right inferior, middle, superior frontal gyri and inferior, middle and superior temporal gyri (BA 9, 47, 10, 20, 21, 22, 38; figure 5), compared with stable MCI. No areas of significant hypermetabolism were found.

▶In comparison with healthy controls, MCI-AD had clusters of hypometabolism in the left cingulate gyrus, cuneus, posterior cingulate, and superior parietal lobule (BA 31, 18, 23, 7; figure 6), whereas MCI-FTD presented significant hypometabolic clusters in bilateral caudate, cingulate gyri, superior and inferior frontal gyri and left insula (BA 23, 10, 44, 45, 47, 13; figure 7).



Figure 1

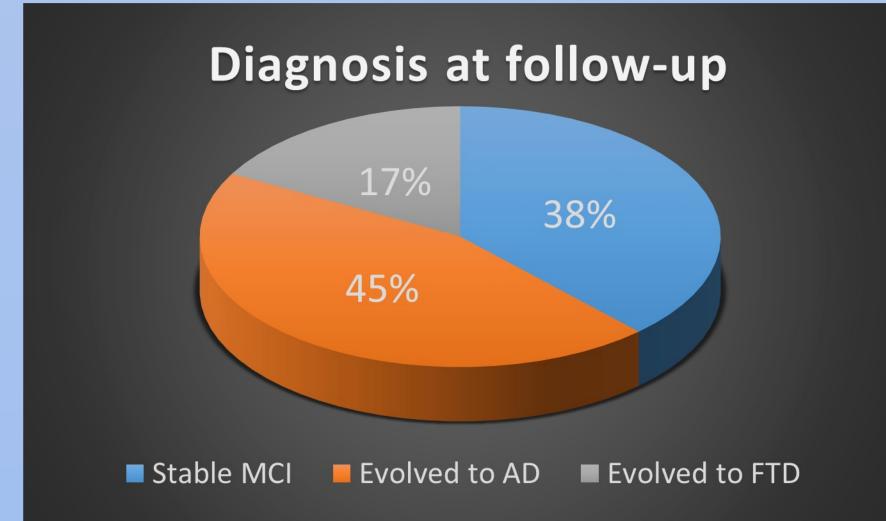



Figure 2

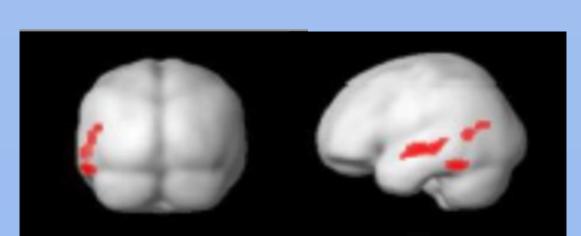



Figure 3 Figure 4

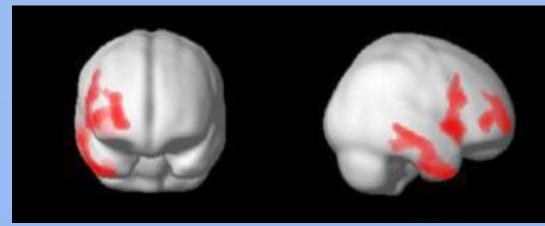
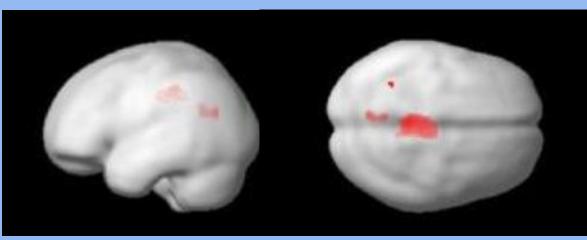




Figure 5



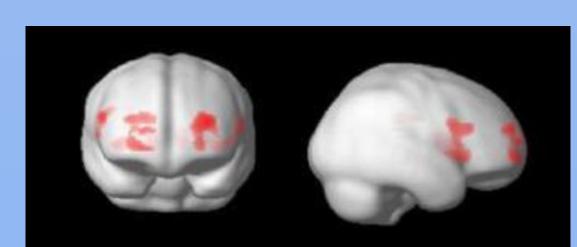



Figure 6 Figure 7

# CONCLUSIONS

Patterns of hypometabolism revealed by FDG-PET in MCI-AD patients and FTD-MCI patients compared with stable MCI, may represent valid neuroimaging early biomarkers of progression to different dementia variants even in the prodromal phase of the disorder.

FDG-PET may be considered a valid tool able to provide predictors of evolution to dementia already in the earliest phases of the disorder, and to differentiate various forms of neurodegenerative diseases in their prodromal phase.

## References

- 1) Dubois B, Feldman H, Jacova C, et al. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 2010; 9: 1118-1127.
- 2) Del Sole A, Clerici F, Chiti A, et al. Individual cerebral metabolic deficits in Alzheimer's disease and amnestic mild cognitive impairment: an FDG PET study. Eur J Med Mol Imaging 2008; 35: 1357-1366.

  3) Cerami C, Della Rosa P, Magnani G, et al. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia. Neuroimage: Clinical 2015; 7: 187-194.