Effects of rehabilitation treatment of the upper limb in Multiple Sclerosis patients and predictive value of neurophysiological measures

V. Nociti^{1,2}, L. Prosperini³, M. Ulivelli⁴, F. A. Losavio¹, S. Bartalini⁴, M. Caggiula⁵, D. Cioncoloni,⁴ P. Caliandro^{1,2}, I. Minciotti¹, M. Mirabella¹, L. Padua^{1,2}.

¹Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University, Rome, Italy

² Don Carlo Gnocchi Foundation, Italy

³ Dept. of Neurology e Psychiatry, Sapienza University, Rome, Italy

⁴ Neurologia e Neurofisiológia Clínica, Dipartimento di Scienze Neurologiche e Neurosensoriali, Azienda Ospedaliera Universitaria Senese, Šiena, Italy

⁵ Neurology Unit, Ospedale Vito Fazzi, Lecce, Italy

OBJECTIVES

Dysfunctions of the upper limbs occur in 66% of Multiple Sclerosis (MS) patients. To date, no data, about the persistence of the effects of a rehabilitation treatment and no prognostic markers of functional improvement, have been established. The aim of our study is finding them to help us identifying patients who could have a better response to a specific rehabilitation program.

METHODS

Twenty-five consecutive patients affected by relapsing remitting or secondary progressive MS, in a stable fase of the disease for the previous 6 months, attending the MS centers of Rome and Siena, were tested for eligibility (Table 1 and 2). They underwent a 16-weeks rehabilitation period consisting of two 55-minute sessions of motor rehabilitation every day and were neurologically evaluated in three consecutives visite: Baseline (T0), after the 16-weeks rehabilitation program (T1) and at the end of the following 12-week postrehabilitation period (T2). At each visit they underwent a complete neurological examination including EDSS score, Modified Ashworth Scale for spasticity of upper limbs, the 9-hole peg test (9-HPT), the Disabilities of the Arm, Shoulder and Hand (DASH) Questionnaire, the 36-item Short-Form Health Survey (SF-36), the Fatigue Severity Scale (FSS), the Beck Depression Inventory (BDI) and finally recorded somatosensory evoked potentials (SEP) of the upper limbs (Table 3).

		Total Patients	
		Ν	%
	Patients	25	/
	Sex		
	Men	13	52%
	Women	12	48%
Type of MS			
	RR-MS	10	40%
	SP-MS	15	60%
Therapy			
	IFNβ	11	44%
	Glatiramer Acetate	3	12%
	Azathioprine	1	4%
	No Therapy	10	40%
Concomitant sensory			
disturbances in upper arms			
	Yes	6	24%
	No	19	76%

	Total Patients		
	Average	SD	
Age (years)	51,9	13,2	
Lenght of			
disease (years)	10,8	6,9	
EDSS score	5	2,0	
FSS score	3,9	1,7	
BDI score	8,4	6,9	

Table 1 and 2: characteristics of the sample of patients

	Left Side	Right Side
SSEPs, n normal:abnormal:absent	11/13/1	10/14/1
P14, ms	16.28 (2.33)	15.98 (1.51)
N20, ms	21.19 (2.67)	20.42 (2.04)
N9-P14, ms	6.21 (1.85)	6.16 (2.10)
P14-N20, ms	4.91 (0.82)	4.45 (0.84)

Table 3: Neurophysiological features at baseline visit

RESULTS

We found a significant improvement of the 9-HPT at both sides, not only at the immediate post-training visit T1 (left: p=0.018,

PRIMARY AND	SECONDARY OUTCOM	MES

right: p=0.004), but also at the 12-week post-intervention assessment visit T2 (left: p=0.033, right: p=0.022). The DASH score also significantly improved at either immediate posttraining visit T1 (p=0.002) and at the post-intervention visit T2 (p=0.007). Furthermore we found a significant improvement in the Physical Composite Score of SF-36 at either visit T1 (p=0.005) and visit T2 (p=0.01) (Figure 1). On top we found a positive correlation between the 12-week post-training change in 9HPT and the N14-P20 interpeak of SEP (rho=0.374, p=0.008) (Figure 2), indicating that there was a reduced carry over effect of the rehabilitation-induced improvement of manual dexterity in those patients who presented a more delayed central conduction time from the lower brain-steam to the cortex. The partial lack of an appropriate sensory feedback during upper limb rehabilitation, as reflected by the delayed latency of N14-P20 interpeak, might have prevented functional adapting changes in partly "deafferented" sensorimotor areas to occur, thereby contributing to functional disability.

CONCLUSIONS

Our study demonstrates that rehabilitation treatment can lead to an improvement of the upper limb motor performance in MS patients which persists after 3 months of treatment-discontinuation further suggesting a possible role of rehabilitation in neuroplasticity changes. Moreover, we found in the latency of N14-P20 interpeak a possible prognostic marker of **rehabilitation treatment effect** on the upper limb in MS patients.

TO-TO	OTTOBRE	ZOTO -	GLINUVA

