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Background A i b

The cerebellum 1s involved in a wide number of integrative functions, but its role 1n pain experience and in

the nociceptive information processing 1s poorly understood. In healthy volunteers we evaluated the effects

of transcranial cerebellar direct current stimulation (tcDCS) by studying the changes in the perceptive %
threshold, pain intensity at given stimulation intensities (VAS:0-10) and laser evoked potentials (LEPSs) /) (\
variables (N1 and N2/P2 amplitudes and latencies).

Figure 1 — Current density generated by cerebellar transcranial direct current
stimulation (cerebellar tDCS) in humans. A. Top panel shows (viewed from the back)

Materi als and M ethOdS the electrode positions for cerebellar tDCS. B. Examples of segmented tissues in two

human realistic Virtual Family models (Ella and Duke) undergoing cerebellar tDCS.
Simulations were conducted using the simulation platform SEMCAD X (modified from
Priori et al., J Physiol 2014, with permission)

Fifteen healthy subjects were enrolled. LEPs were obtained using a neodymium:yttrium—aluminium—
perovskite (Nd:YAP) laser and recorded from the dorsum of the left hand. The main Ao-LEP vertex

complex, N2—P2, and the lateralised N1 component were recorded through standard disc, non-polarizable

Ag/AgCl surface electrodes. N2 and P2 components were recorded from the vertex (Cz) referenced to the PO PO PO
earlobes; the N1 component was recorded from the temporal leads (T4) referenced to Fz. VAS was _, I e
evaluated by delivering laser pulses at two different intensities, respectively two and three times the TMS (RMT) TMS (RMT) TMS (RMT) R
perceptive threshold. After the PT assessment, participants were 1nstructed to pay attention to incoming T0 Tl T2

laser nociceptive stimuli 1n order to verbally rate the perceived intensity about 2-3 seconds after each laser eGS0 20

stimulation, which was performed before tcDCS (T0), immediately after its termination ( T1) and 60 min ina; sham, anoda,

later (TZ) . . o . . . Figure 1 — Experimental protocol. Psychophysical and
Anodal, cathodal and sham tcDCS stimulations were administered in three different sessions and separated electrophysiological variables evaluated at baseline (T0) and at two

by at least 1 week to avoid possible carry-over effects. different time points (T1, T2) following anodal, cathodal and sham tcDCS.

Results
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Table 1. Row data (expressed as mean value = 1 standard deviation, S.D.). VAS were studied in each subject in response to nociceptive Table 2. Contrast analyses: all comparisons were highly significant (p < 0.0001). | | :
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Figure 2 — Correlations between electrophysiological data (iSPOL, iSPD, TCT), motor Figure 1 — A. Averaged LEPs across subject. Traces recorded at baseline (T0) and immediately
scores and mutational load. Note that iSPOL and TCT are directly correlated with after cerebellar polarization (T1) due to sham (left column), anodal (middle) and cathodal (right)
CAG-length and motor score, as well as with the Disease Burden Index, while iSPD tcDCS. B. Histograms showing LEPs variables and VAS scores changes (mean + S.D) after sham
shows an inverse correlation. Correlation lines (black) and error bars (dotted lines) (black), anodal (white) or cathodal (grey) tcDCS with respect to baseline. Top panels: changes
are shown. in N1 variables (amplitude and latency) over time,; bottom panels: changes in N2/P2 complex (**

p < 0.001; *** p < 0.0001).

Discussion and Conclusions

» Our study shows that cerebellar direct current polarization modulates nociceptive perception and its cortical correlates in healthy humans.

» Cathodal suprathreshold tcDCS increases pain perception, increases amplitudes and decreases LEPs latencies, likely though reduction of the
inhibitory tone exerted by the cerebellum on brain targets. Anodal polarization elicits opposite effects producing analgesia.

> As tDCS is effective on both N1 and N2/P2 components, we speculate that the cerebellum engagement in pain processing modulates the
activity of both somatosensory and cingulate cortices.

» Non-invasive cerebellar current stimulation may modulate pain experience and the associated cortical activity through many, not alternative
mechanisms. In particular, changes in N1 reflects the modulation of the sensory component of pain, while the vertex N2/P2 represents the neural

correlate of affective aspects of pain experience (Garcia-Larrea et al. 1997; Valeriani et al. 2007).
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