

Cerebrospinal fluid total tau protein as a biomarker in status epilepticus

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Unità Sanitaria Locale di Modena

Tondelli M¹, Monti G^{1,2}, Giovannini G^{1,2}, Bedin R², Nichelli P^{1,2}, Trenti T³, Meletti S^{1,2}, Chiari A²

¹Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy ²Neurology Unit, Nuovo Ospedale Civile S. Agostino-Estense, AUSL Modena, Modena, Italy ³Clinical Pathology-Toxicology, Nuovo Ospedale Civile S. Agostino-Estense, AUSL Modena, Modena, Italy

Objective Predicting status epilepticus (SE) outcomes is difficult, and primarily based on clinical and EEG parameters. To date, no reliable biomarkers exist to predict SE outcome. Tau protein is a phosphorilated microtubule-associated protein, principally localized at neuronal and axonal level in central nervous system (CNS). High total tau (t-tau) levels in CSF are related to neuronal and axonal damage. No study has specifically evaluated the prognostic value of CSF t-tau level in SE.

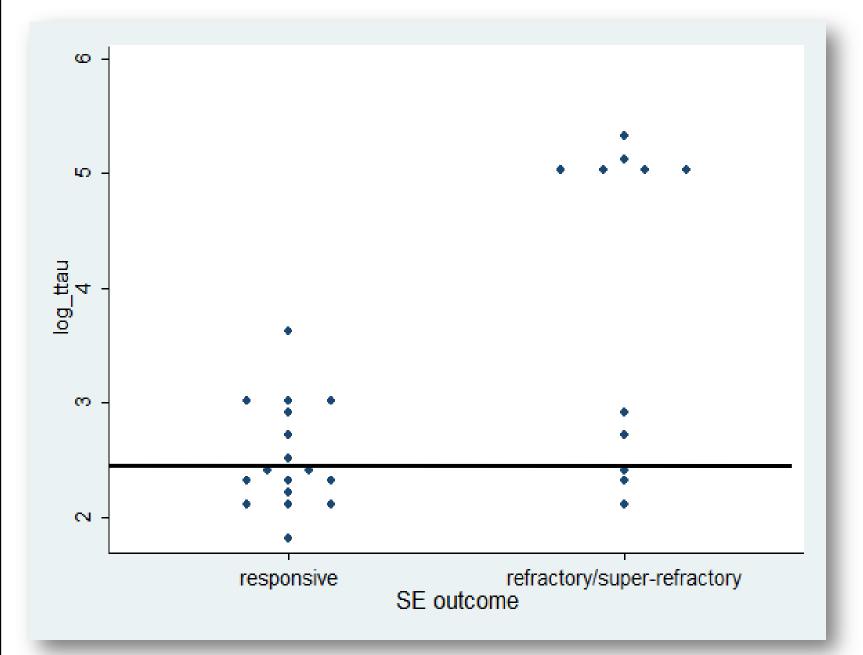
Methods A retrospective observational study was performed between 2007 and 2014.	Table 1. Demographig, clinical data, lab findings	
	Age, mean (sd)	56,10 (19)
Inclusion criteria: all patients with SE who received a lumbar puncture at SE onset or shortly after to rule out	Gender: M (%) – F (%)	10 (35) – 18 (65)
	Previous history of epilepsy/seizure, yesno (%)	3 (10,7) – 25 (89,3)
CNS infection		

SE Etiology

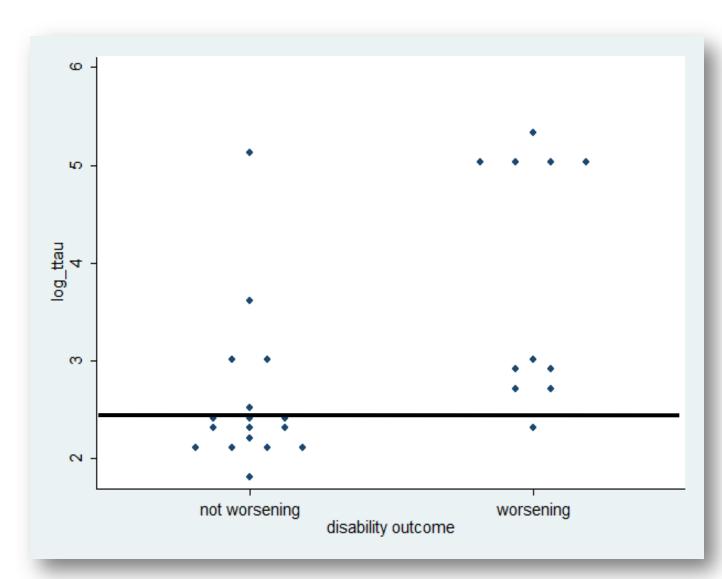
Exclusion criteria:

(i) CT/MRI evidence of acute brain insult as aetiology of SE;

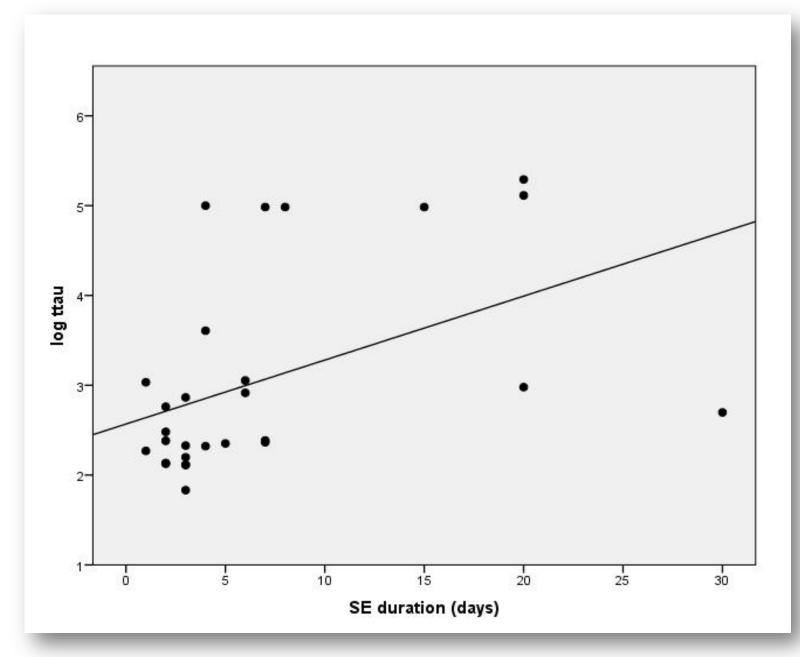
(ii) evidence of viral or bacterial CNS infection;
(iii) neurodegenerative cognitive decline (*iv*) evidence of a progressive CNS disorder (i.e. brain tumour).


28 patients werefinally included (Table 1).

CSF samples were acquired from a few hours after SE onset to a maximum of 20 days (median of 72 hours). CSF A β_{1-42} , t-tau, and p-tau₁₈₁ were measured with ELISA method in accordance with recent guidelines. Cut-off values were established according to literature and to our laboratory data: t-tau < 350 pg/ml; p-tau < 60 pg/ml; A β_{1-42} > 500 pg/ml


JE LIUIUgy	
Remote Symptomatic (%)	10 (35,7)
Drug withdrawal, toxic, autoimmune, unknown	18 (64,3)
SE duration (days), median (range)	4 (1-30)
Days from SE onset and lumbar puncture, median (range)	3 (0-20)
SE Outcome	
Responsive (%)	17 (61)
Refractory/Super-refractory (%)	11 (39)
Anaesthetic drugs use, yes –no (%)	12 (43) – 16 (57)
Development of chronic epilepsy, yes –no (%)	10 (45,4) – 12 (54,6)
mRS worsening, yes –no (%)	11 (39,3) – 17 (60,7)
CSF Biomarkers	
CSF t-tau (pg/ml), median (range)	401 (68 – 195618)
CSF p-tau ₁₈₁ (pg/ml) _, median (range)	39,5 (6 – 132)
CSF Aβ ₁₋₄₂ (pg/ml) _, median (range)	934,5 (309 – 1504)

Results


Considering cut-off values, 14 patients had abnormal high CSF t-tau level, six patients had abnormal high CSF p-tau level, and only three patients had abnormal low A_{β 1-42} level.

Patients with refractory/super-refractory SE had higher CSF t-tau levels compared to patients with responsive SE (p=0.0005); horizontal line represents t-tau cut-off value (350 pg/ml)

Patients with worse neurological outcome (mRS > 1) had higher CSF t-tau level (p=0.005)

Positive correlation between status epilepticus duration (days) and CSF values (r=0.47, p=0.01)

Logistic regression: using several stepwise logistic regression analyses inclusive of all variables with p<0.25 in univariate logistic regression, we found that the best model for predicting disability outcome included CSF t-tau level, need of ICU, and AED refractoriness with 82.14% of cases correctly classified. Sensitivity and specificity of this model were 90.91% and 76.47%, respectively (AUC=0.89).

Conclusion CSF t-tau level might be proposed as candidate biomarker of SE severity and prognosis. Prospective studies are needed to evaluate the consistency of these results.

